
B
R

IC
S

D
S

-02-1
M

.O
.M

öller:
S

tructure
and

H
ierarchy

in
R

eal-T
im

e
S

ystem
s

BRICS
Basic Research in Computer Science

Structure and Hierarchy in
Real-Time Systems

M. Oliver M öller

BRICS Dissertation Series DS-02-1

ISSN 1396-7002 April 2002

Copyright c© 2002, M. Oliver Möller.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/02/1/

Structure and Hierarchy in Real-Time
Systems

M. Oliver Möller

PhD Dissertation

BRICS

BRICS PhD School
Department of Computer Science

University of Aarhus
Denmark

February 2002 Supervisor: Kim G. Larsen

Structure and Hierarchy in Real-Time
Systems

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

PhD Degree

by
Michael Oliver Möller
20 February 2002

Abstract

The development of digital systems is particularly challenging, if their cor-
rectness depends on the right timing of operations. One approach to enhance
the reliability of such systems is model-based development. This allows for a
formal analysis throughout all stages of design.
Model-based development is hindered mainly by the lack of adequate mod-

eling languages and the high computational cost of the analysis. In this thesis
we improve the situation along both axes.
First, we bring the mathematical model closer to the human designer. This

we achieve by casting hierarchical structures—as known from statechart-like
formalisms—into a formal timed model. This shapes a high-level language,
which allows for fully automated verification.
Second, we use sound approximations to achieve more efficient automa-

tion in the verification of timed properties. We present two novel state-based
techniques that have the potential to reduce time and memory consumption
drastically.
The first technique makes use of structural information, in particular loops,

to exploit regularities in the reachable state space. Via shortcut-like additions
to the model we avoid repetition of similar states during an exhaustive state
space exploration.
The second technique applies the abstract interpretation framework to a

real-time setting. We preserve the control structure and approximate only the
more expensive time component of a state. The verification of infinite behavior,
also known as liveness properties, requires an assumption on the progress of
time. We incorporate this assumption by limiting the behavior of the model
with respect to delay steps. For a next-free temporal logic, this modification
does not change the set of valid properties.
We supplement our research with experimental run-time data. This data

is gathered via prototype implementations on top of the model checking tools
Uppaal and Mocha.

v

Acknowledgments

Hardly—if ever—a PhD is the sole achievement of one person. It rather is a journey
where the traveler is dependent on many an aid on the road, has to learn the
language, has to ask for directions, and often needs a helping hand.

In my case, this journey led not only through realms of theory and engineering but
also through countries like Denmark, Sweden, Pennsylvania, and California. It is
only just to name my debts and thank the people who helped me on my way—here
is the place for it.

I want to thank BRICS director Mogens Nielsen for having an open ear, for being
open and honest, for believing so much in science that he even likes PhD students.

I want to thank my supervisor Kim Guldstrand Larsen for his kind support, his
enlightening lectures, and for many valuable discussions.

I want to thank the golden secretaries Janne Kroun Christensen, Karen Kjær Møller,
and Ulla Duus for helping me with tricky organizations and for having answers for
my numerous questions. Ingrid Larsen was always willing to suffer my imperfect
Danish, and I want to thank her for her patience with my travel reports.

I want to thank professor Rajeev Alur for his kind advice, and for giving me the
opportunity to work together with the Mocha group in one of the most historic
places in computer science lore.

I want to thank professor Wang Yi for introducing me to the “Upp” part of the
Uppaal group. This not only taught me UML and most I know about embedded
systems, it also made me alert to how invaluable warm clothing can be.

I want to thank professor John Rushby for once more allowing me to work in the
vivacious environment of the Stanford Research Institute (SRI) and to benefit from
the people and ideas this institution harbors. It was him who showed me what an
exciting place science can be.

Working in the Uppaal team is a great motivation, and I thank its members for
sharing this with me for some time. I include special thanks to Paul Pettersson, who
introduced me to scheduling, modeling, and AIT-WOODDES. The discussions with
him were always an enrichment, and from him I learned a great number of valuable
things.

I want to thank my BRICS fellow students for being company, and more often than
not friends. Special thanks go to the Danish PhD students, who sought contact with

vii

the internationals. They made Denmark a more welcoming place.

In particular I want to thank Daniele Varacca for the conversations we had over a
game of cards. They always reminded me, how colorful the world around us is.
Also, I want to thank Riko Jacob and Paola Quaglia for resisting the temptation to
send me to a mental home, after I talked about categories for weeks.

Condensed thanks go to the coffee paradise Altura in Århus Graven for bringing
some of the world’s best beans into my reach. More than 24 pounds of their ground
delights were needed to create this document.

A document of this volume is not composed without any technical problems. I want
to thank Uffe Engberg and Kaja P. Christiansen for invaluable help with LATEX and
the hyperref package.

Thanks go to Christa Mauer, her colleagues, and Pawel Sobocinski for proof-reading
the UML part (Chapter 1) and giving helpful comments. Maria Sorea read through
Chapter 7 and helped me to improve the presentation. Thanks go also to Alexandre
David for going through the details of Chapters 3, 5, and 9.

I want to thank the family Pedersen, including the she-dog Rudi, for giving me a
home in the mind-soothing surroundings of the Lake Brabrand. I consider myself
fortunate for every day I was able to spend there.
I want to thank the folks from the Århus Klatreklubben for not letting me down
(and sometimes: for letting me down again), after having spent many hours with
both hands on the wall.
I want to thank the people from the Jomsborg Vikingeklubben, who helped me
getting a clear mind again after many a concentrated working day.
I want to thank my father, my brother, and my sister in law for supporting my work,
for paying me visits, and for being a home for me, whenever I showed up in Burgau.
I want to thank my friends in Burgau, Günzburg, AuXburg, Friedberg and many
other places inside and outside Bavaria—for not forgetting me, when I was in foreign
countries, and for keeping contact with words and visits. They prevented me from
feeling lost on this planet and helped me believing that I was doing the right thing.

This list is far from exhaustive; I pray for forgiveness from those I did not mention
by name and include them in my heart-felt gratitude.

M. Oliver Möller,
Århus, 20 February 2002.

viii

Overview Table of Contents

Abstract v

Acknowledgments vii

Overview Table of Contents ix

Table of Contents xi

Introduction 1

I Modeling of Real-Time Systems 19

1 UML and Statecharts 23

2 The Timed Automata Model of Uppaal 41

3 Hierarchical Timed Automata 53

II Algorithmic Verification of Real-Time Systems 73

4 Symbolic Forward Analysis 77

5 Efficiency in Real-Time Model Checking 91

6 The Model Augmentation Technique 107

7 Abstract Interpretation of Dense Real-Time 119

ix

III Making Use of Hierarchical Structure 147

8 Hierarchical Partitioning 151

9 Model Checking Hierarchical Timed Automata 173

Epilogue 197

Bibliography 199

Index 219

Abbreviations 227

x

Table of Contents

Abstract v

Acknowledgments vii

Overview Table of Contents ix

Table of Contents xi

Introduction 1

0.1 Doing it Right: Correctness . 3

0.2 Formal Methods . 5

0.2.1 The Necessity of Being Formal 5

0.2.2 Verification Engineer: A Future Profession? 6

0.2.3 Automation, Automation, Automation 7

0.2.4 What are Reasonable Hopes? 8

0.3 Techniques for Formal Verification 9

0.3.1 Automated Theorem Proving 9

0.3.2 Process Algebraic Methods 9

0.3.3 Stepwise Refinement . 10

0.3.4 Abstract Interpretation . 10

0.3.5 Model Checking . 11

0.3.6 Combining Techniques . 11

0.4 The Design of Real-Time Systems 12

0.4.1 Discrete Analysis Techniques for Real-Time Systems 13

0.4.2 Increase in Complexity . 14

0.5 The State of the Art . 15

0.6 Outline: A Guided Tour Through This Thesis 16

xi

I Modeling of Real-Time Systems 19

1 UML and Statecharts 23

1.1 An Outline of UML . 24

1.1.1 From Unified Method 0.8 to UML 2.0 24

1.1.2 Meta-Modeling: The Four Layers of the UML 25

1.1.3 Extensibility: Lightweight and Heavyweight 27

1.1.4 Realizing Technologies: OMG and W3C Standards 27

1.1.5 Learning UML . 29

1.1.6 Literature on UML . 30

1.2 UML Statecharts . 32

1.2.1 The Evolution of Statecharts 32

1.2.2 The Basics of UML Statecharts 33

1.2.3 Semantics: Still under Development 36

1.2.4 CASE Tool Implementations of Statecharts 37

1.3 Reflection: UML and Statecharts . 39

2 The Timed Automata Model of Uppaal 41

2.1 Timed Automata in Uppaal . 42

2.1.1 Informal Description . 42

2.1.2 Formal Syntax . 44

2.2 Trace Semantics of the Uppaal Model 46

2.2.1 Collection of Legal Traces . 48

2.3 The Logic Language of Uppaal . 49

2.3.1 Local Properties . 49

2.3.2 Temporal Properties . 50

2.4 Reflection: What Kind of Tool is Uppaal? 51

3 Hierarchical Timed Automata 53

3.1 Syntax of Hierarchical Timed Automata 54

3.1.1 A Restricted Statechart Formalism 54

3.1.2 Data Components . 54

3.1.3 Structural Components . 55

3.1.4 Well-Formedness Constraints 56

3.2 Operational Semantics of HTAs . 58

3.3 Unbounded Event Queues . 63

3.3.1 Turing Machines and the Halting Problem 64

3.3.2 Undecidability of Unbounded Queues 65

3.4 Partial Encoding of Events . 68

3.4.1 Events in Rhapsody . 68

3.4.2 Respecting Number, Ignoring Order 69

3.5 Reflection: Hierarchical Timed Automata 70

xii

II Algorithmic Verification of Real-Time Systems 73

4 Symbolic Forward Analysis 77

4.1 Symbolic Representation of Traces 78

4.2 Data-Structures for Symbolic Real-Time 80

4.2.1 Regions and Zones . 80

4.2.2 Operations on Zones . 81

4.2.3 Difference-Bounded Matrices (DBMs) 82

4.3 Forward State-Space Exploration . 83

4.3.1 Symbolic Forward Reachability 84

4.3.2 Variations of the Inclusion Test 85

4.3.3 Liveness Checking . 86

4.4 Reflection: Symbolic Analysis of Real-Time Systems 88

5 Efficiency in Real-Time Model Checking 91

5.1 Optimizations for Real-Time Model Checking 92

5.1.1 Active Clock Reduction (-a) 92

5.1.2 Compact DBM Representation (OFF with -C) 92

5.1.3 Space Usage Reduction by Smaller “Passed” List (-S 1|2) 93

5.2 Approximation Techniques for Real-Time Systems 93

5.2.1 Convex Hull Over-Approximation (-A) 93

5.2.2 Under-Approximation: Bitstate Hashing (-Z) 94

5.2.3 Other Approximation Techniques 94

5.3 Other Options of the Uppaal Engine 95

5.3.1 Depth-First Search (-d) . 95

5.3.2 Disable Deadlock Checker (-W) 95

5.3.3 Display Warnings as Queries (-Q) 95

5.3.4 Change Size of Hash Table in “Passed” List (-H size) . . 96

5.3.5 Optimize Time Consumptions when Several Prop...(-T) . . 96

5.3.6 Unpack Reduced Constraint System Before Inclusion...(-U) 96

5.3.7 Do Not Display Copyright Message (-q) 96

5.3.8 Run Silently Without Progress Indicator (-s) 96

5.3.9 Print Diagnostic Trace to Standard Output (-t) 96

5.3.10 Display Traces Symbolically (-y) 97

5.4 Run-Time Experiments with Uppaal 97

5.4.1 Why Run-Time Comparisons are Problematic 97

5.4.2 How to Read the Run-Time Charts (Figures 5.5–5.8) 98

5.4.3 Fischer’s Mutual Exclusion Protocol 99

5.4.4 CSMA/CD Protocol . 100

5.4.5 FDDI Token Ring Protocol 101

5.5 Reflection: Optimization Techniques for Real-Time Systems 101

xiii

6 The Model Augmentation Technique 107

6.1 Adding Parts to Uppaal Models . 108

6.1.1 Formal Definition . 109

6.2 Soundness of Model Augmentation 110

6.2.1 Suitable Augmentations . 111

6.3 Model Augmentation for Universal Path Properties 112

6.4 Bricks Sorter Example . 114

6.4.1 The Bricks Sorter Model . 114

6.4.2 Augmentation of the Bricks Sorter Model 115

6.5 Reflection: Model Augmentation . 118

7 Abstract Interpretation of Dense Real-Time 119

7.1 Outline of this Chapter . 120

7.2 Abstract Interpretation . 121

7.2.1 Galois Connections . 122

7.2.2 Property Preservation over Kripke Structures 122

7.2.3 Strong and Weak Preservation 123

7.3 Predicate Abstraction . 124

7.4 Timed Systems with Restricted Delay Steps 125

7.4.1 The Next-Free µ-Calculus . 129

7.5 Predicate Abstraction for Real-Time Systems 134

7.6 Sets of Basis Predicates . 139

7.7 Refinement of the Abstraction . 141

7.8 Reflection: Abstractions of Real-Time Systems 144

III Making Use of Hierarchical Structure 147

8 Hierarchical Partitioning 151

8.1 How to Group Together? . 152

8.2 The Tree-Indexing Problem . 154

8.3 A Greedy Algorithm to Partition Hierarchically 160

8.4 Experimental Results . 164

8.4.1 Asynchronous Parity Computer 164

8.4.2 Leader Election in a Ring . 167

8.4.3 Opinion Poll Protocol . 168

8.5 Reflection: Hierarchical Partitioning 170

9 Model Checking Hierarchical Timed Automata 173

9.1 Overview on the Flattening Procedure 174

9.2 Flattening in More Detail . 175

9.2.1 Translation of Superstates and Entries — Phase I 175

9.2.2 Exit of Superstates via Global Joins — Phase II 178

9.2.3 Post-Processing of Channels — Phase III 180

xiv

9.3 Semantic Correspondence of HTAs and TAs 180
9.3.1 Hierarchical and Flat Configurations 181
9.3.2 Correspondence of Steps . 182
9.3.3 Correspondence of Traces . 184

9.4 Model Checking a Cardiac Pacemaker 185
9.4.1 The Hierarchical Timed Automaton Model 185
9.4.2 Translation to Uppaal Timed Automata 187
9.4.3 Model Checking the Uppaal Model 192

9.5 Reflection: Flattening Hierarchical Timed Automata 194

Epilogue 197

Bibliography 199

Index 219

Abbreviations 227

xv

xvi

Introduction
Formal Methods for Real-Time

I just want to make the point that reliability really is a design issue, in the sense
that unless you are conscious of the need for reliability throughout the design, you

might as well give up.

— A.G. Fraser, at the NATO Software Engineering Conference 1968

Analyzing a system amounts to exploring its behavior. A complete analysis
makes it possible to predict the behavior under all circumstances. Intuitively a
system is correct if it always behaves as intended.

Even for very simple systems a complete analysis is typically infeasible. Thus
the quest for correctness is a story full of high expectations, special cases, and
compromises. Hopes are low to include concerns for correctness a posteriori,
when the design is done and dependencies are set. The advocated approach is
to include these concerns as a part of the construction process. In short, try to
make the system analyzable with respect to interesting properties.

One classic method to achieve correctness is to break down the problem into
smaller sub-problems. A system is understood as a box with an input, an out-
put, and a relation between both. This relation specifies the intended behavior
(e.g., [Bar96]). A box behaves correctly, if its contents guarantee to meet this
specification. Now one can break down the box into a number of smaller boxes,
each with its own specification. The correctness proof then relies on the assump-
tion that all small boxes satisfy their specification. This assumption is discharged
in the next step, where the small boxes are split up into even smaller boxes and
so on. The process terminates when every smallest box is supplied with a direct
proof to satisfy its specification.

1

2

This approach is appropriate for systems of a purely functional nature. Of-
ten this is then visualized via a black box. One does not make assumptions on
the inside of it, but only on the description what it does. This point of view
is particularly helpful when reasoning about the correctness of algorithms. Al-
gorithms perform a certain finite manipulation on the input. Classically this is
deterministic, thus the manipulation can be seen as computation of a discrete
mathematical function. The computation is correct if for every input the output
is as expected.

However, most software written today does not fit in this picture. Some parts
of the code certainly serve to compute functions, but the lion share is concerned
with interaction of some sort, e.g., via a user interface. This is especially true
for reactive systems, where the prime functionality is not a general computation
service. Rather the performed computations are merely means to provide a
service of different nature, like coordinating the engine of a car or receiving a
phone call. This requires repeated interaction with an environment. As Harel
and Pnueli note in [HP85], a reactive system resembles a cactus with multiple
inputs and outputs (Figure 1). This nature has to be taken into account during
specification and development.

The specification of interactions requires to reason about evolutions of the
system. A simple relation between input and output is not adequate for this:
the correct response can depend on what happened just before. One of Pnueli’s
suggestions is to use dialects of temporal logics for the specification. These logics
basically allow to relate a present state to future and past. By means of a logical
formula one can express properties like “whenever a happens, then b happens
some time later.” A number of such properties constitutes the specification.
Relations of input and output are a special case of temporal logic specifications.

The process of establishing or refuting a property for a given system is called
verification. Formal verification performs this task in a domain that is defined
with mathematical precision. The object of analysis is a model of the system,
and not the system itself [Bru95]. Depending on the domain of application,
the gap between a system and its (mathematical) model can be significant to
non-existent. An aero-plane caught in a thunderstorm can experience jolts and
pushes that are not present in an idealized model, whereas an assembler program
executing on a microcontroller can be expected to behave exactly as modeled.

Many reactive systems are in fact also real-time systems: their correctness not
only relies on the occurrence of an operation, but also on the timing of it. This
dictates to include a real-time component in the specification—and also in the
model: operations take time. Developers of real-time systems had to experience
that this adds an extra dimension of complication. During development the
analysis is performed on a model of the system. Thus it is necessarily relative to
assumptions one the timing behavior of the real system, and in last consequence
of the underlying hardware.

0.1. Doing it Right: Correctness 3

This thesis discusses formal verification techniques for real-time systems. The
main problem with automated verification is the high computational complexity.
We make use of structural information, like hierarchies and loops, to battle this
problem. Our methods of choice to improve efficiency are approximations and
abstractions. It is indispensable to assert the soundness of such techniques. In
this Chapter we outline scope and range of the treated topics.

0.1 Doing it Right: Correctness

It is fair to say that correct systems are as valuable as gold.1 Even more—they are
as rare. In this Section we discuss what correctness means in first place.

Correctness is intrinsically relative to some description of what the system is sup-
posed to do. In software engineering such a description is also called specification.
A formal analysis always requires a formal specification.

For example, it is impossible to assert that the implementation of the UNIX
command ls (which lists the contents of a directory) is correct. The manual page
of the command can be seen as a specification. But this specification is written
in natural language and leaves room for ambiguities. For example, the option -R

is supposed to recursively list subdirectories. Now there is the possibility to have
a symbolic link pointing to a directory. Is this a subdirectory? If yes, should the
directory also be listed when it is in fact an ancestor of the current directory? The
ls program would not terminate in this case.

Whether you get what you expect can also depend on factors not under the control
of the implementer. Is it correct, if special characters are displayed as escape codes?
Is it intended that parts of a directory tree might be listed, even if you do not have
read permission for them? Is the report that something cannot be listed already
a violation of secrecy? If the number of files in a directory is excessively large, ls
refuses to list them. Is this a bug or a feature?

It can be argued that recognizing a “bug” is easy, once it occurred: something
undesirable happened. Catastrophes like the Challenger disaster2 or the famous
Pentium FDIV bug3 were certainly not intended behavior of the systems.

It does not always matter how “big” the fault is. In theory, every one bit can
change everything. The risk increases enormously with the number of small gears
that have to work together in union.

1See, e.g., [Bar96].
2On 28 January 1986 the world was shocked by the destruction of the space shuttle Challenger

and the death of its seven crew members. A decade after this national tragedy, the world wide
web hosts a variety of resources. The Space Policy Project of the Federation of American Scientists
collected those at a Challenger Accident homepage: http://www.fas.org/spp/51L.html.

3The floating point arithmetic of the first Pentium computes the wrong division results for a
small set of inputs, see http://support.intel.com/support/processors/pentium/fdiv/wp/.
This is not the only fault of this microprocessor and possibly not even its worst. Intel’s list of errata
includes a so called Pentium FO bug that can cause the processor to deadlock. For virtually every
high-performance microprocessor dozens of failure scenarios are known.

http://www.fas.org/spp/51L.html
http://www.fas.org/spp/51L.html
http://www.fas.org/spp/51L.html
http://www.fas.org/spp/51L.html
http://www.fas.org/spp/51L.html
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/

4

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Figure 1: Reactive Systems Resemble a Cactus Rather Than a Box. Various De-
pendencies can Exist Between Various Inputs and Outputs.

To talk about correctness it is not sufficient to determine what is wrong behavior;
more importantly it has to be defined what is right . This means that before building
a system, one needs to describe more or less exactly what it should do. Natural
language is not an adequate vehicle for that, since it can harbor ambiguities. Also
it is difficult to assert that all cases are covered.

To exclude all ambiguities it is unavoidable to resort to a language with math-
ematical precision, logic. This does not as much dictate how a statement looks,
but more importantly what a statement means. Every logic language prescribes
a set of allowed statements (syntax) and how exactly they have to be interpreted
(semantics).

The basic unit of observation in a system is commonly known as a state. At any
point in time one could in principle take a snapshot and extract status information:
what bits are up or down, which instruction is currently executed, and so on. A
state consists of the combination of all this information.

Propositional and first order logic can be adequately used to express properties
of a state. What arises typically is the need to reason about computations over
sequences of states. Dialects of temporal logic [Pnu77,CES86,Pnu86] can naturally
express relations between subsequent states. Temporal operators allow expressions
like “all future states” or “some future states”. Depending on the dialect, analogous
operators may or may not exist for the past.

In practice logics can be tailored for a specific domain of application. Designers
are likely to use what suits their needs best. Some aspect may well be described in
a different language: the weight of a micro-chip is unlikely to be expressed via logic.

In this thesis we concentrate on the part of a specification that is a set of logical
formulas. We refer to a system as “correct” if it fulfills all these logical properties.
This does not imply that the right things happen. Specifications can be wrong or
incomplete. Even if a property holds, the analysis can be unable to prove it. The
benefit of using a logic language is primarily that there are no two ways about what
is said and what is true.

Using a logical language solves part of a communication problem that has to be
taken serious. In September 1999, NASA lost a Mars Climate Orbiter due to a
simple mistake: a piece of ground control software carelessly calculated values in

0.2. Formal Methods 5

inch instead of using metric values. Not only is it strange that this error was not
spotted. It is amazing that an error like this could occur in first place. Obviously
some of the exchanged data was incomplete or ambiguous.

The remedy is rigorous and simple: all technical data has to provide all rele-
vant information in an unambiguous way. In the design of complex systems this
philosophy has a name—formal methods.

0.2 Formal Methods

Formal methods is the collective term for development techniques that apply a
purely mathematical model of system and specification. We give some background
information and highlight both problems and benefits.

0.2.1 The Necessity of Being Formal

Formal methods were put to practice in the past two decades. The core elements
are (1) a description language with well defined semantics and (2) a logic framework
to reason about formal statements. The language is meant to grasp the essence of
a system in a mathematical manner. Thus desired properties can be expressed as
conjectures. With an adequate method of inference, a property can either be proved
correct (verified) or refuted—typically via the construction of a counterexample.
Ideally the refutation not only uncovers the flaw but also gives an intuition why the
property does not hold. This makes the task of correcting the flaw much easier.
With the modified system a new attempt to establish desired properties can be
made. This yields a simple iterative development process.

The mathematical nature of a description comes with several benefits. State-
ments about the system and its shortcomings can be communicated clearly within a
group of designers. The ability to write formulas down leaves no room for ambigu-
ities, though misunderstandings are possible. Via commitment to a mathematical
formalism, advanced support by machinery is feasible. Computers are very good at
doing simple manipulations on large amounts of data and at being pedantic about
every detail. The understanding of the formalism, however, has to be added by
means of a human factor. At FMCAD’98, Carl-Johann Seger noted that

If you use formal verification as a black box, it is pretty useless most of
the time.

Formal methods do not come for free—to apply them, a number of obligations have
to be met. First, a choice of the right formalism has to be made. This has a research
component, since the expressive power of several formalisms is not completely un-
derstood. Comparisons of proposed approaches with each other are often on the
level of argument rather than proof. Second, formal methods are typically hard to
learn, since they base on mathematical concepts. They require a high-level under-
standing of the connection between logical foundations and the actual design. This

6

requires experts, or at least education for the working engineer. Third, formalisms
are tedious and error-prone if handled manually. Making everything explicit entails
voluminous descriptions and reasoning on a low level. This requires tool support.

Efforts have been made to develop universal and widely accepted standards to
ease these burdens. Organizations like the W3C or the OMG develop industrial
standards in information technology. For example, the latter authors the Unified
Modeling Language (UML), see Section 1.1. Though not primarily a formal lan-
guage, it can be used as a starting point to develop formal frameworks.4

0.2.2 Verification Engineer: A Future Profession?

The application of formal methods requires from the designer a strong background
both in the foundation and in methodology. Expectations are pessimistic that
trained designers are available soon in sufficient number to apply formal methods
on the large.

Amir Pnueli communicates a vision of a new profession called verification engineer
in his Turing award lecture [Pnu97]. Pnueli notes that

There is no purely scientific solution to the system correctness problem.

Instead the way to go could be the less rigorous engineering approach. A verification
engineer would be knowledgeable in many tools and methods, among which formal
verification should be a major player—but not the only player. A most effective set
of tools would also include a number incomplete methods, like the strategic genera-
tion of test cases [Nie00]. In place of a deep understanding of any one method the
emphasis is on a merely conceptual knowledge about a large number of methods.
Elements of the daily work would be the choice of the right method, making com-
promises between cost and benefit, and following standardized and tried procedures.

More than four years after this lecture, verification engineer is not yet an estab-
lished profession. There are no specialized educations, no degrees, no job descriptions
to be found. However, a considerable number of people in corporations apparently
work as verification engineers. This is visible through their presence in academic
conferences like CAV, CADE, TPHOLs, and CHARME, where major corporations
like Intel, NASA, ICASE, IBM or Microsoft Research are listed as affiliations.

It remains to be seen whether verification engineering will crystallize to a pro-
fession with standard education programs, techniques, and skills. It seems fair to
state that formal methods have their place in the industrial design process and thus
necessarily also the people applying them have their place.

One indication for this is the presence of tools like theorem provers and model
checkers in industrial design. Applied formal methods move the burden from human
designers partially to automated processes and reproducible facts. This is not only
beneficial but necessary, as Wolper noted in [Wol98]:

Manual verification is at least as likely to be wrong as the program itself.

4See AIT-WOODDES on page 71.

0.2. Formal Methods 7

0.2.3 Automation, Automation, Automation

It might be surprising that some decades after the rise of formal methods tool support
is still very basic. Case studies are performed by researchers rather than by engineers.
Only few methodologies are off-the-shelf. There are reasonable explanations, why
advances are delayed.

One explanation is that finding the “right” formalism is crucial to further tool
support. Small variations tend to have vast consequences. It can take years to re-
alize the effects in detail, since the development of tools in an academic setting is
tedious and often overshadowed by political decisions. In the search for tool design,
an asymmetry is encountered, often referred to as the 80-20 rule: 80% of the func-
tionality can be provided by 20% of the effort, while the remaining fifth is much
harder to cover (e.g., in [COR+95]). The computational complexity of the problems
dictates restrictions, both on automation and on expressiveness of formalism. Un-
derstanding the computational complexity can be a guide in making wise choices. To
give an example, in the Uppaal tool, usage of clock values in the transition guards
have been rigorously restricted. Allowing more general constraint expressions here
would make the task of deciding simple properties of the model computationally
much harder.

It has also been pointed out that computational complexity occasionally gives a
wrong intuition, since it is classically worst case complexity. This can be skewed
with respect to the set of inputs, on which the algorithm is actually applied.

An illustrating example of this misalignment comes from operations research.
Here the simplex algorithm is the most popular and in practice also most efficient
algorithm for solving linear programs, though it has a worst-case exponential lower
bound and polynomial algorithms are known. A recent paper explains this paradox
by redefining the measure of computational complexity according to assignments
that are almost solutions of the problem [ST01]. According to this measure, which
is a hybrid between worst-case and average-case analysis, the shadow-vertex simplex
algorithm is polynomial.

In formal verification, an algorithm with high inherent complexity is not necessar-
ily useless. The Mona tool [BK95,HJJ+97,KM01] demonstrates that an algorithm
with a stack-of-exponentials5 lower bound can have reasonable applications in prac-
tice. A significant amount of software engineering had to be invested before the tool
was up and running.

There is a wide gap between theory and practical application. Industry is reluc-
tant to invest man-power in technology that is not fully established and understood.
Thus, tools applied on a daily basis in an industrial setting tend to limp behind
the academic state of the art. To give an example, the recent commercial tool
TUXEDO-LECtm6 basically does equivalence checking, advanced properties are

5I.e. the value expressed by the term 22
··
2

, with height n; sometimes referred to as tower(n).
6TUXEDO-LECtm is released by Verplex Systems, a company founded in 1997. For more

information see http://www.verplex.com/lec%5Fbrochure.html.

http://www.verplex.com/lec%5Fbrochure.html
http://www.verplex.com/lec%5Fbrochure.html
http://www.verplex.com/lec%5Fbrochure.html
http://www.verplex.com/lec%5Fbrochure.html

8

not addressed. While this gap is not surprising, it is exceptionally painful considered
the rapid growth in size and number of systems designed today.

Academy is faced with an additional assessment problem: it is often hard to
apply and test new technology on realistic examples. Most modern designs are
considered mental property. Therefore companies hesitate to open up their treasure
to a scientific community, where every result and insight is considered public.

As yet, algorithms and tools fail to automate verification of the high-end of
industrial designs. We cannot expect to scale up to this by merely making the
machines faster by a factor; if the input size doubles, the problem gets more difficult
by orders of magnitude. Success relies vastly in the detection of optimizations and
efficient ways to represent the data. The challenge is to grasp what is essential in a
design. If we can guide our algorithm to identify the crucial controls, we can expect
it to operate them.

0.2.4 What are Reasonable Hopes?

It is doubtful whether automation in formal verification will ever reach a level where
the human interaction is reduced to the task of pushing a button. Machinery is not
likely to replace understanding of a complex system. Sometimes formal methods
cannot possibly guarantee correctness of the system, as it is the case when significant
abstractions are applied.

What is reasonable to expect is tool support for experts. This can free the de-
signer from many gory details, allow for the re-use previous work, and act as reliable
scribe in long-term and multi-people projects. The ideal tool can also hide informa-
tion without neglecting it. Not every person working on the project would necessarily
have to understand all foundational details. The underlying formal methods could
“disappear” into familiar environments like simulation [Rus00].

Partial application of verification technology can also be useful. Formal methods
proved to be very successful in uncovering bugs that ran undetected by traditional
techniques, like intensive testing.

Design methodologies often start out with a high-level description of a system.
This description is likely to be in the scope of algorithmic treatment. Simulation
can be used to validate the intuition of the designer. Formal verification can be
applied to verify that the design fulfills some high-level constraints. Those may be
far from trivial. E.g., one can assert timing constraints under some assumptions on
the duration of primitive operations.

In some cases the problem is small enough to be manageable. Not every faulty
chip etched today has the dimension of a Pentium. And like many communication
protocols or simple software components, they lie within the reach of tool support
and could be verified with algorithms out of the box. Thus it is an investment to
build experience in this technology, with obvious short-term benefits and a reason-
able chance for revenue in future designs. Parts of the industry seem to have adopted
this thought. Companies like AT&T, Bell Laboratories, Cadence, IBM, Intel and
Motorola started formal verification programs in the recent years, often kept internal

0.3. Techniques for Formal Verification 9

and on a high level of confidence.
For the interested reader we recommend [Hal90] and the followup [BH95]. A tool

engineer’s point of view on formal verification is recorded in [Ste98].

0.3 Techniques for Formal Verification

Formal verification is the process of establishing or refuting that a system conforms
to a specification. We briefly outline some of the most prominent techniques: auto-
mated theorem proving, process-algebraic methods, step-wise refinement, abstract
interpretation, and model checking.

0.3.1 Automated Theorem Proving

Automated theorem proving spans a wide spectrum of approaches and software
systems that can be classified with respect to the level of automation they provide.

On the low end there are proof checking formalisms, like LCF [GMW79]. Here
the task of establishing soundness of every step in a formal reasoning system is
mechanized. Though definitely useful in many settings, the construction of the
proof is entirely left to the user. Since many proofs are long and complex, this
technology alone is rather a building block than a tool itself.

A long-term project aiming for machine checkable proof formalisms is Mizar

[Rud92]. The core of it is a language based on set theory formulated in logic. The
proof checker, originally implemented by inference rules, uses model checking in the
later versions.

Many researchers advocate semi-automated techniques. This is incorporated by
tools like Ehdm [RvHO91], SDVS [BILT92], PVS [COR+95], HOL [MT93], or
its offspring Isabelle [Pau94]. Here the tool helps organizing and documenting
the constructed proof in a reproducible way. Typically the re-usage of lemmas (or
libraries of them) and high-level proof strategies are supported. Moreover, powerful
automation can be applied in special cases that occur frequently. For example, the
validity of propositional formulas can be established without human interaction. So
the user is free to concentrate on the interesting or challenging parts of a proof.

Some tools support a high or complete level of automation. Examples for this
are the Boyer-Moore theorem prover (Nqthm) [BM79, BM88]—originally a fully-
automatic theorem prover for a logic based on a dialect of Lisp—and the resolution-
based theorem prover Otter [McC90,WOLB92]. The price for the automation is
either a restricted language or an incomplete analysis. If time or memory of the
machinery do not suffice to fulfill the task, it is up to the user to decompose the
problem into smaller subgoals.

0.3.2 Process Algebraic Methods

A process algebra is a calculus where the first class citizens is a process. Operations
allow to build more complex processes from simple ones [Hoa85,Mil89]. Typically

10

the simplest processes is the empty (idle) process and the atomic unit of information
is the occurrence of one event. Examples for operations are sequential and parallel
composition, hiding of events, synchronization and non-deterministic choice. Alge-
braic laws state the equality of processes. For example, the choice operator can be
commutative.

One primary motivation of process algebras is the study of an abstract computing
process. For this a large number of calculi have been developed.

0.3.3 Stepwise Refinement

One classic method of software development is the top-down approach. From an
initial specification, one would derive a design on an abstract level. This would
further be more concrete by adding details, until it reaches an implementation level
and actual code is generated.

Conceptually this process is a stepwise refinement. If a strict discipline is followed,
one is able to proof that the design version n is a refinement of version n− 1, in the
sense that is introduces intermediate steps, but maintains both data- and control
flow.

Systems of functional nature can be broken down into smaller and smaller “Chi-
nese boxes” [Bar96]. Referential transparency restricts the mutual dependencies to
the caller/callee relation. This is adequate for designs where the level of distribution
is low and the problems are rather an algorithmic than an architectural challenge.

For systems that can be described as reactive, the refinements amounts to the
traversal of a “magic square” [HP85]. Along one dimension the level of detail in-
creases, from high-level sketch to actual implementation. Along the other dimension
the description of behavior increases. This includes interactions of distributed parts.
Statecharts are advertised as an adequate vehicle to traverse this square, since they
allow for successive additions of detail.

0.3.4 Abstract Interpretation

This approach simplifies the analysis of a concrete system by interpreting its oper-
ations in another (smaller) universe [CC77]. If a property can be established this
way, it also holds in the original system. The conditions for connecting concrete and
simplified system are rather general, thus this is a very flexible technique.

Abstract interpretation has a strong tradition in the area of program analysis,
where standard abstractions for primitive data types are known. The prominent
method is the fixed point computation over lattice structures [NNH99]. In this
setting the method is typically applied a posteriori: the way the system is described
is not influenced by the applied analysis.

A major application area is compiler construction. Information about, e.g., dead
code allows for obvious optimizations. If the analysis fails to detect a true property,
this is acceptable: the compiler merely misses a possible optimization step. Instead

0.3. Techniques for Formal Verification 11

of focusing on any one property, it is more important to detect as many properties
as possible in an economic way.

Recently this methodology has also attracted attention in the context of reactive
systems [Kel95,Dam96,CC00].

0.3.5 Model Checking

Model checking is a fully automated technique for the verification of finite state
systems. It emerged in 1981 from the work of two pairs, Queille & Sifakis and
independently Clarke & Emerson. Given a system and a temporal logic formula ϕ,
all states where ϕ holds are computed in a recursive fashion. For every sub-formula
ψ of ϕ the states where ψ holds are identified by applying this step for ψ and so
on, terminating with primitive properties. For more detailed information we refer
to [CGP99,Kat99].

Model checking requires a search of the complete reachable state space, which
is often excessively large. This phenomenon is known as state explosion problem.
Approaches to battle this problem are still a busy research topic. Many fall in the
categories of symbolic techniques and partial order reductions. Symbolic techniques
represents the state space in an efficient way by combining equivalence classes of
states [BCM+90]. Partial order reductions cut down on interleavings of transitions
by allowing only one path where several paths are equivalent [JK90,GW91].

The evolution of model checking is strongly connected with one symbolic tech-
nique. It started with Bryant’s work on binary decision diagrams, or BDDs for
short [Bry86,Bry95]. A BDD is a directed rooted acyclic graph with two terminal
nodes, 0 and 1. The intermediate nodes are labeled. On a traversal of the graph
these labels occur always according to a fixed order, and each label occurs at most
once. BDDs can be used naturally to encode Boolean functions. The nodes corre-
spond to variables and the next edge taken in the traversal depends on the value of
the variable. The terminal node gives the value of the function, 0 or 1.

Interestingly this representation is canonical , i.e., for a fixed variable ordering
any Boolean function has exactly one BDD representing it. By this virtue, some
operations—like checking for equivalence—can be performed very efficiently.

Now a set of states can also be encoded by a Boolean function, i.e., by a BDD. Un-
der certain variable orderings, many such BDDs are in fact small. This phenomenon
can be used effectively for model checking [McM93]. Today a large number of BDD
variations exist that adopt also to other areas of application.

0.3.6 Combining Techniques

Formalisms strive to preserve as much information of the original design as possible,
but some techniques require an abstraction step. There is future potential in the
combination of powerful techniques, like (semi-)automated theorem proving and
model checking. As an example we list [SS99], where Boolean abstractions of a

12

bounded retransmission protocol are computed with aid of a theorem prover (PVS).
This abstraction is then model checked, while preserving properties from the full µ-
calculus.

One step further in this direction is the Symbolic Analysis Laboratory (SAL)
[BGL+00]. In SAL an intermediate high-level description language builds the core
of an analytic platform that connects to a variety to different tools. Information
generated by one tool can serve as input to another one. For example, a model
checker could expand the state space of a system symbolically. This state space is
also the strongest invariant of the system and can be used in a theorem prover to
aid an inductive proof.

So far only the surface has been scratched in the combination of techniques. One
reason might be that it is difficult to find an expert that is fluent in more than one.
We believe that there is a significant potential to be explored.

0.4 The Design of Real-Time Systems

Design and development of real-time systems originated in control theory, where the
micro-chip is understood as a machine part. Discrete analysis methods can aid this
process to a certain extend, but have to cope with a number of difficulties.

A real-time system is one, where the correctness not only depends on the function-
ality but also on the timeliness of this functionality. A system where a computational
device is part of a machinery, whose prime purpose is not a computing service, is
called an embedded system. Typical examples are wristwatches, mobile phones, or
car engines. The digital part of an embedded system tends to have limited com-
putation power and a very restricted amount of memory. Since these devices are
manufactured in large number, the cheapest hardware sufficient to fulfill the task
is used. Most embedded systems are both real-time and reactive systems, i.e., they
interact continuously with their environment in a timely manner.

We note that classically embedded systems do not have a processor at all. They
rather solve the computational problem by means of bare wires or simple circuits.
These analog computers have little in common with their digital cousins. They
have no instruction set, no clock cycle, and no memory other than capacity. As an
engineering discipline, control theory has long since—and successfully—treated the
problem of coordinating, stabilizing, or correcting continuous physical processes by
these means

The concept of using digital controllers is controversial; traditionally, controllers
are synthesized as solutions to differential equations. Those solutions are closely
matched by analogous circuit parts like integrator, inverters, or filters. Using digital
technology dictates a different infrastructure, different physical layout, and a dif-
ferent realization. Most importantly, it requires other methods for synthesizing an
adequate controller.

One of the introduced complications is the need for scheduling . Since not all
computations are performed in an analogous manner, a number of computation

0.4. The Design of Real-Time Systems 13

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Hardware Level

Controller

Probe

Sys

Figure 2: Unstructured and Structured Description of an Embedded System.

tasks have to share the processor. The timeliness of the system is then equivalent to
hard deadlines that every task has to meet. If a hard deadline is missed, the input
data is too old to be useful.

For a soft deadline, late data is still good data. It is not catastrophic if a soft
deadline is missed. It has merely to be guaranteed that the deadline is met on the
average. If both hard and soft deadlines exist for a computation, both together
constitute a firm deadline. Most systems commonly declared as soft deadline are in
fact firm deadline systems.

Such systems needs a scheduling policy that guarantees that all hard deadlines
are met. Since time is consumed mainly by executing machine instructions, this
boils down to counting instructions and computing the longest possible execution
path.

How difficult it is to perform this analysis depends on the nature of the tasks.
An important factor is whether tasks execute in inseparable blocks or can be put
on hold before finishing their computation. An example is a classic paper on rate
monotonic scheduling by Liu and Layland [LL73]. Their results give sufficient con-
ditions to guarantee that all task meet the deadlines. Similar results are lacking
for dynamic scheduling policies. Numerous technical problems—like context switch,
unpredictability, latency, or jitter—render the actual creation of a running system
a challenging problem for engineers. The designers who perform the crucial steps
tend to be experts on the hardware they control. The analysis can be automated
only to a limited extend.

0.4.1 Discrete Analysis Techniques for Real-Time Systems

Most commonly the analysis of a system design is required a priori , i.e., before
the actual system can be build. This fits well together with model based develop-

14

ment [Bru95].

Adaption to Time. Many of the verification techniques in Section 0.3 have been
adapted to real-time. For automated theorem proving, the applicability for timed
settings has been explored, e.g., in [Sha93]. For process algebras, a number of calculi
addressing time as a primitive exist. Examples for this are Timed CSP [RR88],
TCCS [Yi90], and ATP [NS94]. For stepwise refinement, time settings have been
explored, e.g., in [SZJ94]. For abstract interpretation, approximation of real-time
safety properties can be formulated in the have been formulated in this frame-
work [WT94, DT98]. An approach to approximate also liveness is presented in
Chapter 7.

Timed Automata Model. For model checking, the timed automata model of Alur
and Dill [AD94] is most influential for this thesis. The language is basically an
extension of finite state machines with additional real-valued variables that represent
clocks. Transitions can be guarded by Boolean expressions over these clocks and
clocks can be reset when taking a transition. Properties of timed automata can
be expressed in timed dialects of logic. If the guard expressions are chosen from a
restricted language, the model checking problem remains decidable [ACD93]. Since
we interpret time over a dense domain, the state space is infinite. The analysis has
to rely on equivalence classes, i.e., states are treated symbolically.

Duration Calculus. One of the specialized techniques for timed settings is the
duration calculus [CHR91]. Here a formula can reason about the duration of states
without explicit mentioning of the absolute time. E.g., the formula

∫
P ≤ 5 holds for

the interval I, if during I the system is at most 5 time units in state P . In addition
to the usual Boolean operations the logic features a chop operation on intervals.
(D1;D2) is true for an interval I, if I can be partitioned into two consecutive
intervals I1, I2 such that D1 holds in I1 and D2 holds in I2.

In general the calculus is undecidable. For certain fragments, however, a formula
can be decomposed into an un-timed controller communicating in an asynchronous
manner with timers [OD98]. This closes the gap from specification to implementa-
tion for a restricted class.

0.4.2 Increase in Complexity

As most designs, real-time systems increased in complexity. Traditional analysis
methods often turn out to be inappropriate to meet the new challenges.

One answer to increase of complexity is the introduction of more structure, In
particular hierarchies can help to cut down a complex system into manageable parts.
In [HP85], Harel and Pnueli suggest to use the statechart formalism to build this
hierarchies (Figure 2). This requires tools and analysis techniques to manage this
notation.

0.5. The State of the Art 15

Another dimension is to introduce abstraction layers. Real-time operating sys-
tems, cast in silicon, allow for starting the composition of controller programs on a
higher level. The OSes could take care of task management, priority levels, dispatch
time, and memory management. Designing a general purpose real-time OS is not
easy.

0.5 The State of the Art

It is subtle to determine what problems today are in the scope of formal treatment.
First, only a limited number of real-wold design task was addressed with formal
methods. Before the first try, it is commonly believed that it is impossible.

Second, new techniques are part of an industrial manufacturing process. If suc-
cessful, they become immediately a competitive advantage and are regarded as intel-
lectual property. Experiences, tools, and expertise are not necessarily shared freely.

Thus we can only give a vague estimate of the state of the art. We list a number
of projects and corporations that apply formal analysis techniques in a larger scope.

One of the largest formal method projects in the last years is the driverless Me-

teor line 14 metro in Paris. 115·000 lines of specification compile into a 87·000 line
ADA program. Correctness was established with interactive theorem proving. This
required to handle 27·800 proof obligations. To discharge them, 1·400 rules were
added to the theorem prover and proved correct; for 900 of them this was possible
without user interaction. The necessary manpower is listed as 600 person-years. As
yet, no errors were claimed to be found in software or specification (see [CC01]).

Practitioner Johnson noted in 2001 [Joh01]:

Formal analysis is outside the mainstream of system design practice.

The main reasons are lack of educated people and higher development cost. Devel-
oping proof carrying code, for example, is regarded roughly six times as expensive
as ordinary code.7 It is arguable, whether initial high cost is over-compensated later
by savings in debugging or maintenance. However, there are examples where formal
methods are applied on the large scale.

John Hatcliff guides the Bandera project8. The declared goal is to derive static
properties of Java programs. In [CDH+00], a combination of state-of-the art methods—
like abstract interpretation—is used to establish safety properties.

The hardware corporation Intel uses theorem proving (in addition to testing and
other validation disciplines) to develop components of today’s microprocessors, e.g.,
the floating point unit [KK01].

7Richard M. Soley, Chairman and Chief Executive Officer of the Object Management Group
(OMG), in a panel discussion at ETAPS’2000, Berlin.

8http://www.cis.ksu.edu/santos/bandera/

http://www.cis.ksu.edu/santos/bandera/
http://www.cis.ksu.edu/santos/bandera/
http://www.cis.ksu.edu/santos/bandera/
http://www.cis.ksu.edu/santos/bandera/
http://www.cis.ksu.edu/santos/bandera/
http://www.cis.ksu.edu/santos/bandera/

16

Under the supervision of Thomas Ball and Sriram K. Rajamani Microsoft Re-
search launched the SLAM project [BR01].9 The objective is to analyze device
drivers written in C. The applied methodologies encompass static analysis, Boolean
and Cartesian abstractions, and model checking.

Also other industrial activity reflects the development of formal methods. A num-
ber of corporations develop commercial tools in this area. Examples for analysis tools
include the Tau SDL10 Suite from Telelogic11, visualSTATE from IAR Systems12.
Some examples for other companies concerned with formal analysis technology are
AT&T13, Esterel Technologies14, and Prover Technology15.

Challenges. Design and analysis of complex systems is far from being a solved
problem. Important lines of work in the field include the enhancement of automation,
the cooperation of analysis tools, and the standardization of modeling formalisms.
For real-time, we address some of these challenges in our thesis.

0.6 Outline: A Guided Tour Through This Thesis

In the following we give an overview of this thesis, line out the scope of the Chapters
and highlight the contribution of the author.

This document reports both on things we discovered and things we built—sometimes
alone, sometimes in collaborating with other researchers. It also contains overviews
on topics that are relevant for the context and motivation of our work; we summarize,
where an appropriate compendium does not seem to exist.

Important keywords are collected in the Index (page 219). We apologize for the
multitude of used acronyms, especially in Chapter 1. As a partial remedy, a complete
list of acronyms is given on page 227.

Part I

Chapter 1—UML and Statecharts. This Chapter provides background on relevant
developments in context of the unified modeling language (UML) and David Harel’s
statechart formalism. The author of this thesis presents this as a summary without
own contributions.

9http://www.research.microsoft.com/projects/slam/
10Specification and Description Language, see http://www.sdl-forum.org/SDL/index.htm.
11http://www.telelogic.com
12http://www.iar.com
13http://www.att.com
14http://www.esterel-technologies.com
15http://www.prover.com

http://www.research.microsoft.com/projects/slam/
http://www.research.microsoft.com/projects/slam/
http://www.research.microsoft.com/projects/slam/
http://www.research.microsoft.com/projects/slam/
http://www.research.microsoft.com/projects/slam/
http://www.research.microsoft.com/projects/slam/
http://www.sdl-forum.org/SDL/index.htm
http://www.sdl-forum.org/SDL/index.htm
http://www.sdl-forum.org/SDL/index.htm
http://www.sdl-forum.org/SDL/index.htm
http://www.sdl-forum.org/SDL/index.htm
http://www.telelogic.com
http://www.telelogic.com
http://www.telelogic.com
http://www.iar.com
http://www.iar.com
http://www.iar.com
http://www.att.com
http://www.att.com
http://www.att.com
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://www.prover.com
http://www.prover.com
http://www.prover.com

0.6. Outline: A Guided Tour Through This Thesis 17

Chapter 2—Uppaal Timed Automata. The author has been part of the Uppaal

development group during the last two years. This included participation in discus-
sions, writing of bug-reports, drafting answers for the mailing list, and maintenance
of official web pages. The understanding of the tool reproduced in this Chapter
stems from this time.

Published material: The trace semantics of Uppaal timed automata is to appear in
a condensed version in the workshop on “Theory and Practice of Timed Systems”
(TPTS 2002) as part of [Möl02].

Chapter 3—Hierarchical Timed Automata. Syntax and semantics of this formal-
ism was discussed and constructed together with Alexandre David, under kind advice
of Wang Yi. We designed the .xml grammar for this language and revised it after
discussions with Emmanuel Fleury.

Published material: A revised draft of syntax and semantics is available in the tech-
nical report [DM01]. A condensed version is to appear in “Fundamental Approaches
to Software Engineering” (FASE’02) [DMY02].

Part II

Chapter 4—Algorithmic Verification of Real-Time Systems. We provide a sum-
mary of background information on real-time model checking as incorporated in
the Uppaal tool. The algorithms were neither developed nor implemented by us.
Rather this Chapter presents a high-level description of the implementation. We
use the trace semantics from Chapter 2 to formulate a correctness proof. There is
no published material associated directly with this part.

Chapter 5—Efficiency in Real-Time Model Checking. This Chapter features ex-
perimental data but no technical results. The description of the optimization options
is given to make up for the lack of a description in a manual. We conducted the
experiments and compiled the data to a readable form.

Published material: The experimental data is made available from the official Up-

paal web pages, http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/.

Chapter 6—Model Augmentation. Both technical material and case study are
sole work of the author.

Published material: A condensed version of this Chapter is to appear in the workshop
on “Theory and Practice of Timed Systems” (TPTS 2002) [Möl02].

Chapter 7—Abstract Interpretation of Dense Real-Time. The technical content
of this Chapter is joint work with Maria Sorea and Harald Rueß.We extended the
presentation to fit the broader context of abstract interpretation.

http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/

18

Published material: A preliminary version of this Chapter is available as technical
report [MRS01] and a condensed version (with the proofs cut out) is to appear at
the workshop on “Theory and Practice of Timed Systems” (TPTS 2002) [MRS02].

Part III

Chapter 8—Hierarchical Partitioning. This work was advised by Rajeev Alur.
Our contributions are the formulation of the algorithm, the experimental implemen-
tation in Mocha, the construction and comparison of benchmark examples, and the
NP-completeness proof.

Published material: With a minor exception, all of the above work is documented in
the technical report [MA00]. A condensed version appeared in “Correct Hardware
Design and Verification Methods” (CHARME’01) [MA01].

Chapter 9—Flattening Hierarchical Timed Automata Starting point for this
Chapter is the formal semantics of HTAs from Chapter 3. The reference imple-
mentation of the flattening procedure16, the documentation, the description, and
the pace maker case study are work of the author.

Published material: The flattening procedure is first outlined in [DM01]. A one
page abstract appeared in the “13th Nordic Workshop on Programming Theory”
(NWPT’01) [DMY01]. The paper to be published in “Fundamental Approaches to
Software Engineering” (FASE’02) [DMY02] contains only a sketch of the flattening
procedure. The Nordic Journal of Computation invited to submit an extended
version.

Other Records

During the previous two years we enjoyed working as a member of the Uppaal

group. As an effect, we co-authored a number of papers in context of Uppaal

[ABB+01,BDL+01a,BDL+01b] and AIT-WOODDES [ADF+01]. Though reflecting
relevant background information, these publications do not share technical content
with the material presented in this thesis.

16See also http://www.brics.dk/%7Eomoeller/hta/vanilla-1/.

http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/

Part I

Modeling of Real-Time Systems

19

21

A man with a watch knows what time it is.
A man with two watches is never sure.

— Segal’s Law

Real-time systems are systems where timeliness is essential to correctness. Con-
sider the airbag in a car. It does not suffice to establish that after a collision it
will expand—it is also crucial that this happens neither too early nor too late.

Such systems play a major role in industrial design and development. In par-
ticular embedded systems, whose primary purpose is to offer some service other
than computation itself, outnumber full-grown processors by an order of magni-
tude: most computations today are done on small, weak, and cheap hardware.
These systems are found in everyday use and range from simple appliances like
wristwatches and remote controls to complex designs, such as mobile phones,
cars, and airplanes. Most embedded systems are also real-time systems.

22

The timeliness of actions adds to the challenge of manufacturing a working
system. Typical development breaks down a design into a number of interacting
components. This entail the need to communicate the exact description of any
part, but nevertheless be able to describe a complex design on a high level of
abstraction. Most developments processes involve trail and error. So it is very
desirable to validate a design long before the first prototype is built.

One way to address this needs is to use models of the system throughout the
design phases. Models can be scaled physical systems, mathematical equations,
or functional representations. As design progresses, more and more detail is
added to the model or the models.

We are focusing on the analysis of the timed aspect. In the past ten years
the formal verification community has developed strong analytic methods for
reasonably abstract models of timed systems. One of the most thoroughly stud-
ied formalisms is the timed automata model [ACD93]. Some of the analytic
methods—and these are our focus—are fully automated. An algorithm can give
answers to queries like “will the airbag always come out in time.” If this is not
true in the (current) model, a counterexample scenario can be generated that
shows the designer why it does not hold. Ideally, this counterexample can be
used to fix the problem.

However, the mathematical (and usually restricted) models are not the first
choice language of a designer. Her modeling language should be shaped according
to the crucial design problems and not according to the analysis. We note that
there is a gap between the industrial engineering practice and the models used
in the formal verification community. This part of the thesis is devoted to bridge
this gap in a prominent case: we connect UML statecharts to the timed automata
model as used in the Uppaal model checking tool.

Our enterprise makes it necessary to explain the UML and the associated
statecharts model to some detail (Chapter 1). We also give a formal definition
of Uppaal timed automata model (Chapter 2). As a synthesis we offer a timed
model that is halfway between UML statecharts and Uppaal (Chapter 3). This
can serve as an intermediate step in the formal verification of UML statecharts
with respect to timing aspects.

An important property of our formalism is that verifying specifications ex-
pressed in a fragment of timed logic remains decidable. This allows for fully
automated analysis of this language. We use this property later to apply model
checking on our formalism: in Chapter 9 we report on a flattening procedure
that translates our formalism faithfully to Uppaal.

Chapter 1

UML and Statecharts

The multitude of books is making us ignorant.

— Voltaire (1694 - 1778)

It is a frequently repeated fact that systems designed today are far more com-
plex than even the day before. Consequently the development cannot be the
task of gifted individuals, but rather of large teams collaborating in different
roles.

The need to distribute complicated design tasks over a large and hetero-
geneous number of designers entails a communication problem. Attempts to
agree on standard terms and notations led to the advent of modeling languages
such as Booch, OMT, OOSE, or UML [BE96,RBP+92,JCJÖ93,RTF99].

The UML is a graphical language that expresses program design in a stan-
dard way, allowing design tools to interchange models, provided they comply
to some specified standard.

Statecharts are a formalism of hierarchical and parallel state machines that
communicate and synchronize over several levels. The UML includes state-
charts as part of the behavioral view of the modeled system. Large designs
can be naturally decomposed along the architectural hierarchy. Due to the em-
phasis on the dynamics, statecharts are an attractive language for simulation
and even code-generation. Since statecharts allow for a multitude of choices for
a precise semantics and have a broad spectrum of possible applications, they
have been the center of lively discussions, developments, and research over the
last years.

In this Chapter we outline the UML in general and the UML statechart
formalism in particular. We do so first to give a brief overview on the basic
concepts, second to contrasts the attitude of a modeling language to the char-
acteristics of a verification formalism, and finally to motivate the introduction
of hierarchical timed automata in Chapter 3.

23

24 Chapter 1. UML and Statecharts

1.1 An Outline of UML

The unified modeling language (UML) is a large collection of modeling formalisms
that have proven to be useful in industrial-sized design projects. In this section, we
briefly review its history of its development from version 0.8 to 2.0, point to major
current developments, and outline technologies that are inherently connected with
the evolution of UML.

1.1.1 From Unified Method 0.8 to UML 2.0

We briefly outline the development of the modeling language over time. See [BRJ99,
Kob01b,Kob01a] for an more detailed exposition.

The first object-oriented modeling languages appeared between the mid-1970s
and the late 1980, as methodologists started to experiment with new modeling con-
cepts that were tailored for the new object-oriented design paradigm. In 1994 there
were around 50 different object-oriented modeling languages around [BRJ99].

The standardization of modeling languages started out, as Grady Booch and
James Rumbaugh collaborated within the company Rational and sought to join
their development methods, Booch and OMT with the Unified Method v. 0.8 in
1995 [BR95]. One year later, Jacobson—the developer of OOSE—also joined Ra-
tional and contributed his expertise in UML 0.9 [BJR96] (June 1996). The three
outstanding methodologists Booch, Jacobson, and Rumbaugh became known as
“Three Amigos”.

Rational established the UML consortium, consisting of several organizations1

willing to contribute to a strong and complete modeling language. In January 1997
the straightened out revision (UML 1.0 [Par97a]) was proposed to the Object Man-
agement Group (OMG)2 with the intention to make it their standardized modeling
language.

This lead to the expansion of the UML consortium that virtually included all
other OMG submitters of standardized modeling languages.3 The final proposal,
UML 1.1 [Par97b], was submitted in September 1997 to the OMG. Two month later
the OMG officially adopted UML as its object modeling standard.

From there on, the further development was taken care of by an OMG Revision
Task Force (RTF), a broad and open society that contains both academic and indus-
trial partners. As a purely editorial revision without significant technical changes,

1Digital Equipment Corporation, Hewlett-Packard, I-Logix, Intellicorp, IBM, ICON Computing,
MCI Systemhouse, Microsoft, Oracle, Rational, Texas Instruments, and Unisys—just to name a few.

2The OMG is an international organization supported by over 800 members, including system
vendors, software developers, and users. Details can be found on the OMG home-page http://-
www.omg.org.

3 Notable new partners included Andersen Consulting, Ericsson, ObjecTime Limited, Platinum
Technology, PTech, Reich Technologies, Softeam, Sterling Software, and Taskon.

http://www.omg.org
http://www.omg.org
http://www.omg.org

1.1. An Outline of UML 25

UML 1.2 [RTF98] followed in June 1998.

The RTF reacted to various feedback and collections of problem lists that pointed
out—among other shortcomings—the incomplete semantics of activity graphs and
suggested a cleanup of standard elements for relationships. As a result, UML 1.3
[RTF99] was released in fall 1998. This builds the basis of most UML textbooks to-
day and is sometimes referred to as the “first mature release of UML” (e.g., [Kob99]).

UML 1.4 [UML01], completed in September 2001, is the last minor revision of
the 1.x series, since work on UML 2.0 is nearing completion as this document is
written.

The OMG has organized the construction of UML 2.0 in four parallel requests for
proposals (RFPs), issued between September 2000 and February 2001: Infrastructure,
Superstructure, Object Constraint Language, and Diagram Interchange.

The Infrastructure RFP aims to revise the structure of UML, in particular to
improve the architectural alignment with the meta object facility (MOF) and XML
metadata interchange (XMI)—see page 27f—and provide first class extension mech-
anisms (meta-classes). The Superstructure RFP aims to improve the UML’s ap-
plicability for software development practices like component based development,
or executable models. This should be achieved by supporting run-time architec-
tures and refining the semantic relationship. The Object Constraint Language RFP
aims to define a more powerful OCL meta-model, that is consistent with the UML
meta-model. The Diagram Interchange RFP aims to define a meta-model for dia-
gram interchange. As opposed to already existing model exchange technologies like
CORBA and XMI, this has to include details like element placement, alignment,
fonts, color, etc. See [Kob01b] for an overview and the OMG homepage4 for all the
details.

We point out two recommendation of the revision task force: the semantics of the
activity graphs should be defined independent from statecharts, concurrency should
be rendered more permissive in both diagram types [RTF01]. From UML 1.1, the
description of statecharts underwent a number of changes, most of which resulted
in new inconsistencies.

1.1.2 Meta-Modeling: The Four Layers of the UML

The UML modeling language is formally organized in four levels, M0 to M3 (see
Figure 1.1). Elements on level Mn are instances of element on level Mn+1. The
lowest level is the actual system, the level above is its model. The level above the
model, called meta-model, is a description of entities that can be used for modeling.
On this level, UML itself and extensions of UML reside. In particular, profiles that
extend UML either in a standardized or in a user-defined way are part of M2. The
top level M3 consists of rules, how this description of entities may be constructed.

4http://www.omg.org

http://www.omg.org
http://www.omg.org
http://www.omg.org

26 Chapter 1. UML and Statecharts

Specific User Profiles

MOF

SPEUML

Standard Profiles

User Application Model

User Application

AIT-WOODDES Profile

instance of

instance of

instance of

instance of

Meta Model M2

Model M1

Objects M0

Schedulability, Performance, and Time

Meta-Meta Model M3

Figure 1.1: The Four-Level UML Structure, Here in the Context of the Standard
Profile for Schedulability, Performance, and Time and the AIT-WOODDES Profile.

Example 1.1 A Java run-time object can exist as a part of the actual system
(M0). This object is an instantiation of a more general description—a class—that
is formalized in the user application model (M1). The rules how to describe a class
are given as the UML meta-class (M2) that, e.g., provides a slot for specifying the
number of times an object may be instantiated from the derived class. Finally, the
language for describing the meta-class, the slot, and what it might contain is the
MOF (M3). The meta-class is thus an instantiation of a meta-meta class.

Some confusion arises, since the description and the described object often look
identical. For instance, the UML meta-model is a model of the UML itself - and it
is written in UML. The elements of this meta-model are called meta-classes, e.g.,
Signal, Classifier, or Class.

In a strict meta-modeling approach, every element of level Mn is an instance of
exactly one element of a level Mn+1 level element. Up to UML 1.4, the specification
follows a loose meta-modeling approach, where the “exactly one” requirement is not
met.

1.1. An Outline of UML 27

1.1.3 Extensibility: Lightweight and Heavyweight

Extensions that apply changes on the meta-model level are commonly called heavy-
weight extension mechanism. For example, if you explicitly intend to use a state
machine in your model, one way to do so is to introduce meta-model elements “state
machine”, “state”, and“transition” together with proper associations. On the model
level, a state-machine is then a class combining these primitives in a proper asso-
ciation (every state machine has one or more states and zero or more transitions;
every transition has a start state and a terminal state and so on). An object, finally,
is then one specific instance of a state machine model, where the states are named
and fixed. The advantage of this approach is that it is possible to tailor modeling
elements that exactly correspond to the conventions a group of modelers is already
familiar with.

However, introducing new elements on the meta-level comes with new obligations
to maintain overall consistency. Moreover, it lets your modeling language diverge
from the commonly-used standard. Methodologists warn of what in [Kob99] is called
meta-modeling mania:

the tendency to make domain-specific sledge-hammer changes, where
claw-hammers would suffice.

No default mechanism for heavyweight model extension existed up to UML 1.4, but
it is on the agenda to introduce it in the major revision 2.0 [Kob01b].

Instead of defining a finite state machine from scratch, it could have been ex-
pressed as the restriction of already existing behavioral elements, like statecharts.
An extension that does not apply changes on the meta-model level is also called
lightweight model extension. A profile is the standard lightweight extension mecha-
nism of UML. It comprises a collection of stereotypes, tagged values, and constraints–
all expressed in terms of already existing meta-model elements. The intention is to
customize UML for specific domains of application via expressing key concepts of
the domain in terms of already existing model elements.

The advantage of this approach is that syntactic and semantic confusion can
potentially be reduced. New definitions and explanations should only be employed,
when no appropriate notations and concepts already exist.

Profiles are an integrated concept from UML 1.3 on. Chapter 4 in [UML01] gives
sample profiles to demonstrate construction and usage.

1.1.4 Realizing Technologies: OMG and W3C Standards

A number of emerging technologies are closely connected with the evolution of UML.
We briefly describe XML, OMA, CORBA, MOF, and XMI as the most relevant
ones. The unfamiliar reader of technical texts on the UML is easily confused by the
multitude of the employed acronyms. As a reader’s aid, we provide a compendium
of acronyms on page 227.

The eXtensible Markup Language (XML) is a fairly general method to organize
textual data in a flexible way. Every XML document is conceptually a rooted tree

28 Chapter 1. UML and Statecharts

with different types of nodes, called XML elements, which are textually represented
by a pair of opening and closing tags. XML itself is defined as an application profile
of SGML.5 It gives a concise way to define a document tree structure via document
type definitions (dtd).6

Today XML (as well as HTML) is standardized by the World Wide Web Consor-
tium (W3C). This group develops inter-operable technologies (specifications, guide-
lines, software, and tools) with the self-declared mission to

lead the web to its full potential as a forum for information, commerce,
communication, and collective understanding.

Details can be found on the W3C homepage.7

The Object Management Architecture (OMA) embodies the OMG’s vision for the
component software environment. The architecture provides guidance on how stan-
dardization of component interfaces penetrate up—although not into—applications
in order to create a plug-and-play component software environment based on object
technology.

In connection with OMA, the OMG issued a standard called Common Object
Request Broker Architecture (CORBA). It is a vendor-independent specification for
an architecture and infrastructure that computer applications use to work together
over networks.8

Inter-operability results from two key parts of the specification: OMG Interface
Definition Language (OMG IDL), and the standardized protocols General InterORB
Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP). These allow a CORBA-
based program to inter-operate with another CORBA-based program, in a way
that is largely robust against variations of used operating system, programming
language, or network. OMG IDL has been an ISO International Standard for several
years. In April 2000, the GIOP and IIOP protocols were almost through the ISO
standardization process.

The Meta-Object Facility (MOF) is a CORBA Common Facility for the manage-
ment of meta-information. MOF is a standardized repository for descriptions and
definitions of the fundamental concepts that applications work with. It is intended
for use in a wide variety of scenarios, from type management to software develop-
ment, information management and data warehousing - the MOF can be used as a
meta-information repository within CORBA distributed systems. MOF is designed
general enough, to serve as meta-layer to other constructs than UML, for example
for describing the Software Process Engineering (SPE) management [SPE99], (as
displayed in Figure 1.1).

5SGML is the Standard Generalized Markup Language defined by ISO 8879.
6The widely usedhypertext markup language (HTML) can be described as one particular instance

of an XML. Document type definitions are found e.g., at http://www.w3.org/TR/REC-html40/-
loose.dtd.

7http://www.w3.org
8One of the best tutorials about CORBA is available online at http://www.omg.org/-

gettingstarted/specintro.htm.

http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.omg.org/gettingstarted/specintro.htm
http://www.omg.org/gettingstarted/specintro.htm
http://www.omg.org/gettingstarted/specintro.htm
http://www.omg.org/gettingstarted/specintro.htm
http://www.omg.org/gettingstarted/specintro.htm

1.1. An Outline of UML 29

User View

Structural

Behavioral Environment

ImplementationView
View

View View

Component Diagrams

Deployment Diagrams

Class Diagrams

Object Diagrams

Activity Diagrams
Statechart Diagrams

Collaboration Diagrams
Sequence Diagrams

Use Case Diagrams

Figure 1.2: UML Offers Five Different Views of a System Under Development. Each
View is Substantiated by one or More Diagram Types.

A crucial step in software development is a collaboration of tools that cover different
aspects of the development process. Realizing this need, the OMG organized a set
of rules on the XML stream format into XML for Metadata Interchange (XMI). The
main purpose is to enable easy interchange of meta-data between modeling tools, in
particular UML and MOF based meta-data repositories. XMI integrates three key
industry standards:
1. XML (W3C standard),
2. UML (OMG modeling standard), and
3. MOF (OMG meta-modeling and meta-data repository standard).

1.1.5 Learning UML

It is important to remember that UML is intended to meet the need for notation
for communicating development teams that start out from various different back-
grounds. Therefor preference is given to the inclusion of concepts, even at the price
of redundancy.

The language is structured into five interlocking views (Figure 1.2). Each view is a
projection of the system under development into its organization and structure.

Since UML does not make assumptions on the area of application, nine kinds of
diagrams are present to express specific aspects of the system. They substantiate
the five views by providing appropriate descriptive formalisms.

The user view provides a high-level description of the functionality of the sys-
tem, as it is is perceivable for the user. The structural view defines the connection
between different parts of the system and describes their interplay. The behavioral

30 Chapter 1. UML and Statecharts

view describes the dynamics of the system, i.e., possible inputs, internal changes
of the system state, and expected outputs. The implementation view describes the
system on the level of abstract operational entities (components). The environment
view associates the system with its physical representation in hard- and software
(mapping).

The description of the diagrams is itself organized in packages and sub-packages.
The packages on the top level, are called Foundation, Behavioral Elements, and
Model Management. The graphical notation used in the diagrams stems from com-
mon industrial usage, ambiguity and redundancy were resolved to a large extent,
but some informality remains (October 2001).

Any specific design project is unlikely to make use of the whole language of UML.
Much volume of the notation stems from the UML’s declared goal, to meet the ob-
jectives of different areas of application.

Throughout UML documents, the term “semantics” is used to informally describe
intended behavior and rules of usage, as opposed to formal semantics, which gives a
rigorous and unambiguous definition of all possible behaviors in mathematical terms.

A large part of the description makes use of OMG’s Object Constraint Language
(OCL), which is tailored to express conditions attached to model elements. For ex-
ample, an OCL expression attached to a class specifies rules that every instantiation
of this class has to obey. OCL expressions have a well-defined syntax and instruction
in how to read and understand them. We refer the reader to [OCL97] for details. It
is, however, also admissible to use natural language to express these conditions, if
the designer finds it more appropriate.

For these reasons, UML can be a syntactic, but not a semantic standard. The
latter can be approximated, but due to an inherent informality of meaning never be
achieved.

1.1.6 Literature on UML

The latest developments and changes in UML are available online from the OMG.9

These documents of growing volume (the definition of UML 1.4 spans over 548 pages)
serve as defining reference of the language and give examples of usage. They are
certainly no gentle introduction for learning beginners.

An impressive number of textbooks reached the market to answer the growing
need of developers, engineers, and students to learn UML, or rather: to learn about
the part of it that is relevant for their work. We briefly review a non-representative
collection of them.

The Unified Modeling Language User Guide [BRJ99], authored by the three
chief methodologist of Rational, gives a well-organized and detailed description of

9http://www.omg.org

http://www.omg.org
http://www.omg.org
http://www.omg.org

1.1. An Outline of UML 31

all modeling elements of UML. It briefly addresses application issues and outlines
the Rational Unified Process as one possible design methodology, where UML can
be used. The 1999 edition is on the level of UML 1.3.

UML in a nutshell [Alh98] is published in the popular O’Reilly series and gives
a condensed overview of all concepts and diagrams present in UML. Apparently it
was put together in a hurry—some descriptions are organized merely as collective
lists, technical terms are used inconsistently, and both language and diagrams tend
to be ambiguous and confusing. Building on UML 1.1, it is seriously outdated, no
upgrades seem to be planned.

Using UML: Software Engineering with Objects and Components [SP00]
is unusual in the line of books, for it aims to complement an university course rather
than a reference for working engineers. It clearly indicates, which parts are treated
in detail and which ones are merely outlined. For the latter ones, references are
given. The clean and consequent layout highlights summarizing statements. For
issues where experts disagree, discussions are set up and encouraged. The year 2000
is adopted to UML 1.3 and an update to UML 1.4 is already available.

Designing Concurrent, Distributed, and Real-Time Applications with
UML [Gom00] focuses on educating engineers for the challenging situation, where
the design fits in a problem domain that is characteristically concurrent, distributed,
or real-time—or any combination of them.

The book is organized in three parts. The first part gives an overview on UML
by describing all diagram types, discusses design concepts, distributed system tech-
nology, and provides background in software development methodology. The second
part describes the architectural design method COMET in detail. The third part
provides five case-studies from different areas.

Appealingly, UML modeling concepts are applied in detailed case studies. The
first edition (July 2000) conforms to UML 1.3.

Doing Hard Time: Developing Real-time Systems with UML, Objects,
Frameworks, and Patterns [Dou99a] is a domain-specific application of UML to
the real-time area, where hard, soft, and firm deadlines are present as the guiding
constraints that any implementation has to meet. It addresses mainly professional
software developers, focusing on practical development rather than on theoretical
introduction. It conceptually distinguishes analysis and design, shaping these phases
according to the requirements of real-time development. The ROPES development
process is used as a guiding paradigm. The second edition (Sept. 1999) is based on
UML 1.3.

Real-Time UML - Developing Efficient Objects for Embedded Systems
[Dou99b] is a domain-specific application of the UML. Methodologist Bruce Powel

32 Chapter 1. UML and Statecharts

Douglass focuses on the design of embedded systems that are heavily depended on
a timing component. Consequently, the emphasis is on the behavioral part. The ex-
amples centralize around the Rhapsody tool [Rha02], which makes use of real-time
concepts that are currently in the process of being standardized via UML profiles
(like timers and time-out events) [SPT01]. The edition from 1999 refers to the
UML 1.3.

1.2 UML Statecharts

Statecharts stem from David Harel’s work on visual formalisms for reactive systems.
A higraph structure [Har88] is used to represent hierarchical state machines, that
can be put in parallel at any level of composition. We summarize this formalism as
specified in UML 1.4 [UML01] and relate it with alternative formalizations.

Statechart serve to specify the dynamic behavior of system parts that are ca-
pable of receiving and issuing events. Typically this is associated with instances
of classes, but statecharts can also be used to describe the behavior of use-cases,
actors, subsystems, operations, and other.

We line out the history of state-charts, before we give an exposition of the syntax.
Then we discuss the (operational) semantics; we highlight points, where no common
agreement exists on several valid choices. Last we discuss briefly tool implementa-
tions like Statemate, Rational Rose, or Rhapsody; the open semantic issues
and the crave of costumers for increased functionalities lead to pragmatic extensions
of the basic statecharts languages.

1.2.1 The Evolution of Statecharts

The statechart formalism is a description formalism that evolved from well-estab-
lished diagrams—like flow charts and (communicating) state machines—and offers a
remedy for their limitations in the representation of complex reactive systems [HP85,
Pnu86].

The original paper [Har84] appeared delayed in [Har87]: various committees con-
sidered the work relevant, but not appropriate for their community. David Harel
contributed to the implementation of Statemate1 in 1986; one of the outcomes of
which is a formal operational semantics. Unfortunately, the corresponding publica-
tion [HPSS87] is incomplete, in that it only describes one approach and misses the
full symmetry in the relationship of orthogonal components.

Despite a general agreement on the basic behavior, the hierarchical nature, ad-
vanced parallelism, and sophisticated event communication yield a wide number of
choices on the details. Various groups contributed to the exploration of variations;
the survey article [vdB94] lists 20 different semantics for statecharts and this com-
pendium is far from being exhaustive. The article gives 19 criteria—introduced as

1.2. UML Statecharts 33

“Problem list”—to distinguish the variations. Yet another (very restricted) variant
is introduced in Chapter 3 of this thesis.

The first executable semantics of the Statemate tool was supplemented in [HN96].
The paper contains a rigorous, but informal description of the Statemate seman-
tics, as it was used by the development team in I-Logix. The choices are classified
according to the criteria in [vdB94]. Semantics of statecharts was—and still is—
subject of further discussion (e.g. [PU97,MLPS97]).

Today there is a rich volume of literature on statecharts. Because of the appar-
ent practical impact, statecharts are considered an interesting subject in different
research disciplines. The flexibility of the formalism offers various challenges. E.g.,
statecharts can be understood as a structural decomposition that allows the compo-
sitional analysis of complex systems; this motivated the formulation of compositional
axiomatizations, first published in [HRdR92].

Particularly interesting are the timed extensions that have a natural motivation
in reactive systems. Already [Har87] suggests to make duration a primitive in the
formalism.10A structured operational semantics for timed statecharts was first given
in [KP92], where a textual representation is preferred over a graphical one. Here, a
system is associated with sets of timed traces. Time-bounds attached to transitions
serve as to restrict the behavior of the system. Time constrains prune the number of
possible traces, thus the timed satisfies more properties than the un-timed version.

[HN96] contains the first rigorous (but informal) description of the Statemate

implementation of statecharts. This is elaborated in [PU97] to a formal semantics
in terms of clocked transition systems, thus making it possible to benefit from the
analysis tools developed for this formalism [KMP96,MP91].

UML adopted statecharts as one of the central behavioral diagrams. This seems
natural, since statecharts correspond well with an object-oriented approach (en-
capsulation) and subsume other useful formalisms, like finite state machines. The
development of the UML is governed by large committees, which makes it a subtle is-
sue to make clear choices on a semantic level. As yet, the rigorous and unambiguous
description of UML statecharts is still under development.

1.2.2 The Basics of UML Statecharts

UML statecharts are state machines, where the control locations—usually called
states—can potentially expand to arbitrarily complex state machines. Thus states
are either atomic (basic states) or state machines themselves (superstates). Super-
states can be put in parallel to build a new superstates. Parallel machines commu-
nicate via broadcast style operations. [HPSS87] summarizes this as

statecharts = state-diagrams + depth + orthogonality + broadcast

Basic states are denoted with a round circle, optionally with a name of the state
inside: L1 . The initial state is indicated by a smaller bullet , transitions are arrows.

10The running example in the paper is a wrist watch. The suggested notation to indicate limited
duration of a superstate—a wiggle in the boundary of a state—did not catch on.

34 Chapter 1. UML and Statecharts

Superstates are denoted by rounded boxes, where a name (here: A) is either added
in an adjacent square box, or in a field separated by a horizontal line:

S1 S2

A A

S1 S2

Sometimes it is necessary to indicate that a superstate has terminated and will
not perform transitions any more (unless left and re-entered). For this case, a
special state called final state (also known as terminal states) exists, denoted by a
bullseye: .

The contents of the rounded box can directly display the associated state machine.
However, the definition is often deferred to a separate diagram; in this case, the
rounded box contains conventionally the symbol to indicate the incompleteness.
This makes sense, when the superstate is part of a parallel composition of superstates,
indicated by a dashed separation line (orthogonality). Both of the next pictures
describe a (unnamed) superstate that consist of two parallel sub-machines A and B:

A B A B

SS1 2

When a transition connects to the border of a superstate, then control starts at
the bullet. Strictly speaking, the bullet is not a proper state11, it has to be left
immediately. In the example below, control moves from Location L1 to S1 , passing
through the bullet, but without staying there:

L1
S1 S2

A

If the superstate itself is a parallel composition, then all parallel sub-machines
start at the bullets. Alternatively, a transition can split up and explicitly point to
the target states. This is called a fork, whereas the dual construct is a join:

The bars in the fork or join can also be used as markers for special entries or exits.
This is particularly useful, when the details of a state-machine are omitted in a
diagram, but different types of entries and/or exits have to be distinguished. The
bars are then reduced to stubs as in the following diagram:

11In UML nomenclature, it is a pseudo state; this means that is merely a notational construct
and not part of a proper configuration of the system.

1.2. UML Statecharts 35

A

entry 1

entry 2

exit

Note that entry 1, entry 2, and exit are the names of the corresponding stubs. The
transition starting at the border of the rounded box implies the existence of a default
exit : the superstate A can be exited at any point in time, provided the transition
can be taken.

A modeling element called history connector, graphically H , is a special entry
that is useful in presence of default exits. If a transition connects to it, control
moves to the last active state in this superstate.12

Transitions can be equipped with guards, trigger events, and actions. A guard is
a boolean expression that has to evaluate to true, in order for the transition to be
taken. If no guard is drawn, this corresponds to the constant true. The (optional)
trigger event has also to be present, in order for the transition to be taken. The
(optional) action can be an assignment of variables and/or an event that is broadcast
if the transition is taken.

In the following diagram, the transition from L1 to S1 carries the guard a == 1

(requiring that variable a has value 1), a trigger event with name event1, and—as
action—the release of the event with name event2:

L2
L1

a == 1

event1 / event2

A transition is not always atomic: it may require other transitions to be taken
simultaneously or subsequently. Either might be the case, when an event is broad-
cast. Subsequent transitions arise, if a transition ends not at a proper state, but at
a choice point :

c
guard2

guard1

The transition cannot stop at c , but has to continue by taking one of the sub-
sequent transitions. The intuition behind this construct is rather a cases split than
non-determinism, thus guard1 and guard2 are often mutually exclusive.

Since taking transitions both consumes and generates events, this gives rise to
chain-reaction like effects. A sequence of transitions that terminates in a valid
configuration forms a run-to-completion step. Since transitions generate events and
modify variables that the precise definition of legal run-to-completion steps has been
subject to lively discussions.

12Strictly speaking, one can distinguish between deep and shallow history, according to whether
the control state of enclosed superstates is also restored (deep) or not (shallow). Deep history can
be encoded explicitly via shallow history, if every enclosed superstate has a history connector.

36 Chapter 1. UML and Statecharts

There is a number of details and additional constructions and we are not in a po-
sition to treat them exhaustively. Note that UML statecharts are not an isolated
formalism, but embedded in a rich description language and the context of other
modeling elements. For instance, the guards are in general object constraint lan-
guage constructs (see page 30) and thus can refer to modeling elements outside the
statechart formalism.

Industrial usage motivated the introduction of complex behavioral constructs,
like hierarchy of events, actions triggered on entry or exit of components, and ac-
tivities associated with states. The interested reader is deferred to the expositions
in [BRJ99] (Chapter 24), [Dou99a] (Chapter 4), and—of course—the exhaustive
definition in [UML01].

1.2.3 Semantics: Still under Development

Up to now, no rigorous description of the semantics of UML statecharts exists.
Criticism of the UML addressing the lack of a formal semantics13 is often targeted
at the informal—and occasionally inconsistent—description of statecharts.

Most items on the problem list of [vdB94] constitute the open points today. The
discussions centralizes around two issues: events and atomic steps.

Events

Events are the mechanism for synchronization between parallel components. Events
are generated either by the environment or by taking a transition. A transition may
require the presence of an event, or set of events, in order to be enabled.

If also the absence of an event can be required, this raises the problem of global
consistency : can an event e be generated, if the transition generating e requires the
absence of e in order to be taken? A related issue is causality (or self-triggering): a
transition labeled with e / e cannot be taken, unless e is generated by some other
means than the execution of the transition itself.

In a sequence of steps, events can be understood either synchronous (dealt with in
the same step) or asynchronous (deferred until the next step). Both possibilities—
and even a mixture of them—make sense under certain circumstances.

In addition to explicitly generated events, implicit events—like the entering/exiting
of a superstate, or the passage of time—may be useful in specifications.

Finally, instead of taking events as atomic entities, hierarchical (lattice) structures
of events may be allowed, where one event can be a generalization of two incompa-
rable ones. Depending on the general or specific occurrence, different behavior can
be triggered.

13Up to UML1.4, the semantics of diagrams is given merely textually. UML 2.0 is supposed to
have an “action semantics”, i.e., an unambiguous operational description of all behavioral parts.

1.2. UML Statecharts 37

Chain Reaction (Run-To-Completion Step)

In the synchronous case, the generation of events entails that one transition cannot
be taken in isolation. Rather, a complete chain reaction of transitions is required,
before new inputs from the environment are accepted. For every transition in this
chain reaction the trigger event (if any) has to be present and the guard has to
be satisfied in the instance the transition is taken. This requirement is called local
consistency.

The definition of legal chain reactions is complicated by the presence of variables
that might be read and written in the same sequence—a phenomenon sometimes
referred to as race condition. Since transitions may react to events in parallel, this
is a subtle issue.

It is reasonable to require the sequence to be globally consistent and terminate
in a legal configuration. This entails decidability questions in the general case:
recall that the UML strives to be maximally liberal with respect to what syntactic
constructs are allowed.

All these questions have to be answered, to associate an UML statechart with a
set of possible executions. For an elaborate discussion on what is in a step see [PS01].

1.2.4 CASE Tool Implementations of Statecharts

Statecharts are implemented as a behavioral description language in various CASE
tools, e.g., Statemate, Rational Rose, and Rhapsody. The prime purpose of
these tools is to aid industrial design processes as far as possible.

Since statecharts already exhibit a—typically deterministic—execution behav-
ior, it seems natural to connect the high-level description to real application code
segments that might not require conceptual visualization. The drive from this ap-
plication lead to extensions in the functionality that are motivated by the demand
of customers rather than by reflected considerations.

Bridging the gap from symbolic execution (or: simulation) to executable code is
conceptually simple. Superstates can be associated with object classes, where the
activation of a superstate corresponds to an instantiation of the corresponding class.
User interaction and physical measurements boil down to the release of events and
calls to volatile methods and are realized via a special object: the environment. A
scheduler that governs the release and arrival of events and resolves possible non-
determinism, completes the picture.

Now it is straightforward to add an target language that gives syntax (and se-
mantics) of guard expressions and assignments.14 Such an equipped statechart then
compiles down to a set of source-code files in the particular execution language,
which can further be compiled to machine executable code. This process is com-
monly referred to as code generation.

14E.g., In Rhapsody, this is realized by a C, C++, or Java method call that is allowed to have
side effects.

38 Chapter 1. UML and Statecharts

To maintain the connection to the statechart visualization in the tool, a number
of hooks can be carried along during code generation that preserve the association to
the original model. The running executable then connects with the CASE tool, This
process is sometimes referred to as animation. When this animation also accepts
user-interaction, e.g., the generation of environmental events, this allows for a high-
level form of debugging.

How Real is Real-Time Behavior?

At first it seems straightforward to represent real-time behavior by simply adding
timers, which correspond very much to hardware elements.15

However, the timed semantics make use of the synchrony hypothesis—first for-
mulated in [BG92]—, by which the system is infinitely faster than its environment
and can always compute its response before the next stimulus arrives.

In an implementation, this clearly does not hold. External events have to be
buffered, should they not interfere with the execution of a step in progress. It has
to be asked, how serious the deviation of the run-time behavior with respect to the
formal semantics is, since crucial parts of the analysis are based on the latter.

Central for the formal description of code-generation is a strong connection of
statecharts with a target language. E.g, in Rhapsody, superstates can be associated
with C++ classes; entering a superstate corresponds to creation of an object of this
class. The interaction of objects is by events (of which exactly one can be present
at a time16) or direct method calls.

The central concept here is the active object (sometimes also executable objects),
which is an entity owning a process of thread and able to initiate control activity.
This allows to capture for complex timed behavior on an abstract level. A brief
informal description can be found in [HG94, HG97], more details are elaborated
in [BRJ99]. As yet, the notion of active objects has not solidified to a robust and
widely acknowledged definition.

Importantly, CASE tools do give a semantics of the artifacts they deal with via
their (deterministic) implementation—but this might not be formalized explicitly.
For statecharts this means that the tools make choices wherever the UML lacks
prescription. Thus no two tools declared to be “UML tools” need to agree on the
behavior of the constructs. E.g., the successor of Statemate, Rhapsody, disagrees
in several behavioral aspects, for instance

• simultaneous presence of events (severals vs. maximally one)
• implicit priority of transitions (outermost first vs. innermost first)

It is fair to state that the maturity of the CASE tools that feature statecharts as a
behavioral primitive, significantly increased during the last five years, see e.g. [Hil99].

15E.g., in Rhapsody, timers are implicitly attached to states that are sources of time-out tran-
sitions. Passage of time can then generate a time-out event, which triggers the exit of the state.
16In the more functionally oriented predecessor Statemate, negation of events is allowed. Rhap-

sody makes a simplification here, since the absence of event is rarely a well-motivated condition
and typically only used to encode priorities.

1.3. Reflection: UML and Statecharts 39

However, the level of reliability and stability is not such that they can be claimed
to be finished nor “compatible” in any reasonable sense.

1.3 Reflection: UML and Statecharts

The development of the UML dwells on a rich set of experiences and proven technolo-
gies. The language provides a complete family of diagrams, each shaped to address
a different aspect of the system and each turned out to be relevant in various user
experiences. Statecharts are perhaps the most important diagram type, because
they address the behavior—i.e., a computation—on a high level of abstraction. For
any reasonable degree in size and interaction, construction and analysis of this part
is an extremely challenging task.

The maturity of the UML is arguable. Without doubt, the UML evolved very
stringent way and the revision mechanisms of the OMG are effective. Since the
volume of material is enormous, today no one person is up to date in all the details.
The current revision to UML 2.0 that is supposed to clarify many semantic issues,
is certainly an important step.

One of the declared goals of the UML is the standardization of flexible and useful
description elements, both in notation and usage. Standardization of a modeling
language comes at a price. It necessarily has to include all the needs for a wide
range of users. A standard modeling language has to provide extension mechanisms:
otherwise, it is sentenced to a priori limited application domain, will be extended
ad hoc and encourages non-standard usage.

Though the scope of the language is broad and powerful, it is better suited for
some domains than for others. In particular, the object oriented paradigm is central
to various diagram types.

It is perceivable that tools have yet to catch up with the fast iterations of revisions.
because—if you have customers from industry—you can never take back a feature.
The things to come are promising and they have high promises to keep.

The purpose of the UML is to aid the detailed description of complex systems
throughout design. Therefore the language is rich, user-centered, and maximally
expressive. Quite the contrary is true for formalisms that strive to be minimal,
algorithm-centered, and aiming to restrict to decidable cases. An important exam-
ple, the timed automata model of Uppaal, is given in the following Chapter.

Chapter 2

The Timed Automata Model of
Uppaal

First, a few words about tools. Basically, a tool is an object that enables you to
take advantage of the laws of physics and mechanics in such a way that you can
seriously injure yourself. Today, people tend to take tools for granted. If you’re
ever walking down the street and you notice some people who look particularly

smug, the odds are that they are taking tools for granted. If I were you, I’d walk
right up and smack them in the face.

— Dave Barry, “The Taming of the Screw”

Uppaal [LPY97] is a tool box for modeling, verification, and simulation of real-
time systems. It has been developed jointly by Uppsala University and Aalborg
University throughout the last seven years. It is appropriate for systems that
can be described as collection of non-deterministic parallel processes.

The modeling language used in Uppaal is an enriched dialect of the well
studied timed automaton formalism [AD94], i.e., it features real-valued clocks
over a finite control structure. Additionally the language allows for networks of
timed automata that communicate through channels and shared variables. The
usability and scalability of this formalism has been demonstrated by successfully
application in various case studies, e.g., [LPY98,LP97,HSLL97].

In this Chapter we formally introduce the modeling language of Uppaal

and equip it with a trace-based (formal) semantics. We use this semantics to
describe the specification language of the tool that allows for (timed) safety,
reachability, inevitability, potentially always, and unbounded response.

41

42 Chapter 2. The Timed Automata Model of Uppaal

2.1 Timed Automata in Uppaal

First, we give an informal description of the timed automata model as used in Up-

paal, i.e., networks of timed automata with handshake synchronization and discrete
data. Second, we elaborate this and give the formal syntax for a Uppaal model.

2.1.1 Informal Description

An Uppaal model consists of a network of timed automata with clocks, invariants,
variables over basic data types, guards, handshake synchronization, urgency, and
committed locations.

The basic unit is one process that consists of a directed control graph with labels
on locations and transitions. One location is marked as initial, indicated by the
notation ◦©.

Data components. The data part of the model consists of discrete integer variables
and (formal) clocks that can take any non-negative real value. In Uppaal, integers
are constrained to have values in the interval [-32767; 32767]. Exceeding the
limits wraps around to this finite domain. Variables and clocks can be local to one
process or global. If they are local, standard scoping rules apply and they cannot
be accessed by other processes.

We note that for integer variables, Uppaal allows for some useful constructs. It
is possible to declare integers with limited range, construct arrays of fixed width,
and deal with integer expressions containing constants and the operators +, -, *,
and /. For simplicity, we treat variables here always as integers and do not describe
the full range of valid integer expressions. For the details we refer to [LPY97] and
the online help.

Control structure. Every location can be equipped with an invariant . This is
constrained to be a conjunction of expressions x ≤ const and x < const, where x

is a clock and const is an integer constant.

Locations can be equipped with one of the attributes urgent or committed . If a
location is urgent, no time delay is possible before this location is left. A committed
location also has to be left immediately, but leaving this location has precedence
over other possible transitions. We use the graphical notations u© and c© for urgent
or committed locations respectively.

Transitions are directed arcs between locations called the source and the target .
Transitions can carry guards, assignments, and synchronization signals. We assume
that guards and assignments are always given, in case of absence they are considered
constant true or empty respectively.

Attributes for transitions. For a location l, all transitions with source l are called
outgoing transitions of l.

2.1. Timed Automata in Uppaal 43

a1 b1

INV: x1 <= 2

c1cs

id == 0 x1 := 0

x1 <= 2

id := 1,

x1 := 0

x1 := 0

id == 0

x1 > 2, id == 1

x1 := 0,

id := 0

a2 b2

INV: x2 <= 2

c2cs

id == 0 x2 := 0

x2 <= 2

id := 2,

x2 := 0

x2 := 0

id == 0

x2 > 2, id == 2

x2 := 0,

id := 0

Figure 2.1: Fischer’s Protocol for Mutual Exclusion (2 Processes).

A guard is a conjunction of boolean expressions over variables and clock constraints
of the form x∼const or x-y∼const, where x,y are clocks, ∼∈ {<,≤, >,≥}, and
const is an integer constant.

Outgoing transitions without synchronization signals are enabled , if their guard
evaluates to true and the invariant of the target location holds after execution of
the assignment.

An outgoing transition t1 with synchronization signal b! is enabled, if there exists
an outgoing transition t2 in a parallel process with matching synchronization signal
b?, and for both t1 and t2 the guards evaluate to true and the location invariants
of the target locations hold after executing the corresponding assignments.

An assignment is a sequence of expressions that are either clock resets or of the
form v := expr, where v is an integer variable or element of an array of integers,
and expr is an arithmetic expression over integers.

Clock resets are of the form x := 0, where x is a clock.

Example 2.1 (Fischer’s Mutex)
Figure 2.1 shows of Fischer’s mutual exclusion protocol (see Section 5.4.3) for two
Uppaal processes. The processes share the integer variable id (initially set to 0).
Each process owns a clock xi, i.e., has exclusive read and reset operations on it. This
clock is used to time the progress to the critical section (cs). The mutual exclusion
property requires that always at most one process in the critical section.

The processes, call them P1 and P2, start at a1 and a2 with id == 0 and clocks
set to 0. Further progress in action and time delay is non-deterministic, as long
as it obeys the restrictions of guards and invariants of the model. For example, an
arbitrary amount of time can elapse (delay step) before any of the two processes
takes a transition (action step). As a possible first action step, the first process can
pass the guard id == 0, reset its clock xi to 0, and move control to the location a2.
The invariant INV: xi <= 2 requires that a2 is left again before clock xi exceeds 2,
i.e., within 2 time units. The only option to do so is taking the transition to c1 that
writes the process number (1) to the shared variable id and resets the clock x1. Now
in order to progress to the critical section cs, time has to elapse for more than 2
time units (guard xi > 2). The guard id == 1 makes sure that no other process i
has taken the transition bi to ci in the meantime. As it turns out, this suffices to
establish mutual exclusion.

44 Chapter 2. The Timed Automata Model of Uppaal

Behavior. A configuration is a snapshot of the system with one designated control
location for every process and values for all variables and clocks. An execution of
the model starts in the implicit initial configuration, where every process is in its
initial location, all clocks are 0 and all variables (global as local) are set to their
initial value (integers are 0, arrays are filled with 0).

A configuration evolves in action steps and delay steps. Action steps are either
isolated of synchronized. A simple action step amounts to taking one enabled tran-
sition of one process, execute assignments and clock resets and move control for this
process to the new location. A synchronized action step means that two processes
with enabled transitions, that carry matching synchronization signals (e.g, b! and
b?) both take these transitions. Both associated assignments and clock resets are
executed—the one corresponding to the !-transitions first—and control is updated
for both processes.

If one of the processes is in a committed location, then all action steps not starting
in committed location are blocked. In case of a synchronized action step, at least
one of the two participating processes is required to be in a committed location,
otherwise the step is blocked.

A delay step increases the value of all clocks by a real value d > 0. Delay is only
enabled, if several conditions hold true.

1. No process is in an urgent location,

2. No process is in a committed location,

3. No synchronized action on an urgent channel is enabled, and

4. No location invariants are violated after the delay d.

We note that the real-valued nature of the delay steps is not directly observable,
since clocks are always compared to integer values (in guards, invariants, and for-
mulas). The possibility of real-valued delays basically allows for any order of the
fractional part of clocks, which is not possible if the granularity of time is fixed in
advance [Alu91].

A trace is a sequence of configurations, starting with the initial configuration.
For every two consecutive configurations ci and ci+1 in a trace, there has to exist an
action or delay step that transforms ci into ci+1. For safety properties, it suffices it
suffices to consider only finite traces, since every safety property can be violated (if
at all) after a finite number of steps. For liveness, we have to consider both infinite
and maximally extended finite (deadlocked) traces, since liveness properties can fail
in the later case.

2.1.2 Formal Syntax

We define the formal syntax of Uppaal models as a parallel composition of processes.

For simplicity, we assume a set of labels Labels that ranges over syntactically cor-
rect invariants, assignments, guards and synchronization labels. As a well-formedness

2.1. Timed Automata in Uppaal 45

condition, labels are constrained to occur only in appropriate places, contain only
declared variables, and have to respect the variable types.

Definition 2.2 (Uppaal Process)
An Uppaal process A is a tuple 〈L, T,Type, l0〉, where

• L is a set of locations,
• T is a set of transitions l

g,s,a
−−−→ l′, where l, l′ ∈ L, g is a guard, s is a synchro-

nization label (optional), and a is an assignment (possibly empty),
• Type : L→{o, u, c} is a type function for locations, and
• l0 ∈ L is the initial location.

We use the following access functions to refer to invariants, guards, synchroniza-
tions, and assignments.

• Inv : L→ Labels maps to the invariant of a location (possibly constant true),
• Guard : T → Labels maps to the guard of a transition (possibly constant true),
• Sync : T → Labels ∪ {∅} maps to the synchronization label of a transition (if
any), and

• Assign : T → Labels∪{∅} maps to the assignment associated with a transition
(possibly the empty assignment).

Definition 2.3 (Uppaal Model)
An Uppaal model is a tuple 〈 ~A,Vars,Clocks,Channels,Type〉, where

• ~A is a vector of processes A1, . . . , An;
We use the index i to refer to Ai-specific parts Li, Ti, Typei, and l

0
i ,

• Vars is a set of variables, i.e., (bounded) integers and arrays,
• Clocks is a set of clocks, Clocks ∩Vars = ∅,
• Channels is a set of synchronization channels, Channels ∩ Vars = ∅, and

Channels ∩ Clocks = ∅,
• Type is a polymorphic type function extending the Typei, i.e., Type maps

– locations to {o, u, c} (according to the functions Typei),

– channels to {o, u}, and

– variables to {int, array}.

We use o, u, c, int, and array as predicates, i.e., for a channel b the expression
u(b) evaluates to true, if and only if Type(b) = u.

Definition 2.4 (Configuration)
A configuration of an Uppaal model 〈 ~A,Vars,Clocks,Channels,Type〉 is a triple
(~l, e, ν), where ~l is a vector of locations, e is the environment for discrete variables,
and ν is the clock evaluation, i.e.:

• ~l = (l1, . . . , ln), where li ∈ Li is a location of process Ai,
• e : Vars→ (Z)∗ maps every variable v to either a value (if int(v)) or a tuple
of values (in case of array(v)), and

46 Chapter 2. The Timed Automata Model of Uppaal

• ν : Clocks→ IR≥0 maps every clock to a non-negative real number. For d > 0,
the notation (ν + d) : Clocks→ IR≥0 describes the function “ν shifted by d” in
the following sense:
∀x ∈ Clocks. (ν + d)(x) = ν(x) + d.

Sometimes it is necessary to refer to certain parts of a configuration. We call ~l the
control situation the pair (~l, e) the discrete part , and ν the continuous part of a
configuration.

2.2 Trace Semantics of the Uppaal Model

Uppaal models evolve according to legal steps that are either delays or actions.
The compendium of all legal steps defines the behavior of the model.

We start by formulating simple actions, synchronized action, and delay steps.
To modify the control situation ~l, we use the notation ~l[l′i/li] to indicate that at
position i, li was replaced by l′i, and the other positions did not change. We readily
use assignments a as transformers on the function e (and ν) and write a(e) (and
a(ν)) for the resulting evaluations. Furthermore we use the notation e, ν |=loc ϕ to
indicate that a boolean expression ϕ holds true under the evaluations e, ν for the
contained variables and clocks, and (~l, e, ν) |=loc ϕ analogously in the case that ϕ
contains expressions of the form Ai.li (denoting that process Ai is in location li).
We defer a formal definition of |=loc to Section 2.3.1.

Definition 2.5 (Simple Action Step) For a configuration (~l, e, ν), a simple ac-

tion step is enabled, if there is a transition li
g,a
−−→ l′i ∈ Ti, li in

~l, such that

1. e, ν |=loc g,

2. a(e), a(ν) |=loc Inv(l′i), and

3. if ∃lc in ~l with c(lc), then c(li).

We abbreviate this with (~l, e, ν)
a

=⇒ (~l[l′i/li], a(e), a(ν))

Definition 2.6 (Synchronized Action Step) For a configuration (~l, e, ν), a syn-
chronized action step is enabled if and only if for a channel b there exist two tran-

sitions li
gi,b!,ai−−−−→ l′i ∈ T and lj

gj ,b?,aj
−−−−−→ l′j ∈ T , li, lj in ~l, i 6= j, such that

1. e, ν |=loc gi ∧ gj,

2. aj(ai(e)), aj(ai(ν)) |=loc Inv(l′i) ∧ Inv(l′j), and

3. if ∃lc in ~l with c(lc), then c(li) ∨ c(lj).

We abbreviate this with (~l, e, ν)
τ

=⇒ (~l[l′i/li][l
′
j/lj], aj(ai(e)), aj(ai(ν))

2.2. Trace Semantics of the Uppaal Model 47

Definition 2.7 (Delay Step) For a configuration (~l, e, ν), a delay step with delay
d is enabled, if and only if all of the following holds.

1. ∀li in ~l. ¬u(li),

2. ∀li in ~l. ¬c(li),

3. ¬∃li
gi,b!,ai−−−−→ l′i ∈ Ti, lj

gj ,b?,aj
−−−−−→ l′j ∈ Tj, with li, lj in

~l, i 6= j, such that
u(b), e, ν |=loc gi, e, ν |=loc gj, aj(ai(e)) |=loc Inv(l′i) ∧ Inv(l′j), and

4. e, (ν + d) |=loc

∧
i
Inv(li).

We denote this by (~l, e, ν)
d

=⇒ (~l, e, (ν + d)).

Definition 2.8 (Well-Formed Sequence/Timed Trace)
Let M = 〈 ~A,Vars,Clocks,Channels,Type〉 be a Uppaal model. A sequence of
configurations {(~l, e, ν)}K = (~l, e, ν)0, (~l, e, ν)1, . . . of length K ∈ IN ∪ {∞} is called
a well-formed sequence for M , if

(i) (~l, e, ν)0 =
(
(l01, . . . , l

0
n), [Vars 7→ (0)∗], [Clocks 7→ 0]

)
,

(ii) (maximally extended finite sequences)
If K <∞, then for (~l, e, ν)K no further step is enabled,

(iii) (non-zeno)
If K =∞ and {(~l, e, ν)}K contains only finitely many k such that (~l k, ek) 6=
(~l k+1, ek+1), then eventually every clock value exceeds every bound (∀x ∈
Clocks ∀c ∈ IN ∃k. νk(x) > c).

A well-formed sequence for M is called a timed trace for M , if in addition the
following holds.

(iv) For every k < K, the two subsequent configurations k and k+1 are connected
via a simple action step, a synchronized action step, or a delay step, i.e.,

(~l, e, ν)k
a

=⇒ (~l, e, ν)k+1 or

(~l, e, ν)k
τ

=⇒ (~l, e, ν)k+1 or

(~l, e, ν)k
d

=⇒ (~l, e, ν)k+1.

Condition (iii) weeds out those traces, where time converges towards a finite value in
an infinite number of steps. These traces are also called zeno traces and correspond
to a degenerated behavior of the model, i.e., they have no counterpart in the physical
world where time always progresses.

We note that according to this definition, an infinite trace may yield an infinite
loop of (synchronized) action steps. This also prevents time from progressing, but is
rather a failure of the model than a flaw of the modeling language. These degenerated
traces are kept in semantics to make it possible to detect failures of this type.

48 Chapter 2. The Timed Automata Model of Uppaal

A:
S

c
M

F

B:
S

c
M

F

C:
S

c
M

F

a!

b!

a?

c?

b?

c!

Figure 2.2: The Control Situation A.F and B.F and C.F Can be Reached Via
the Trace (A.S B.S C.S)

τ
=⇒ (A.M B.M C.S)

τ
=⇒ (A.F B.M C.M)

τ
=⇒ (A.F

B.F C.F).

Example 2.9 (Zeno Traces) Consider a Uppaal model consisting of one Up-

paal process A and one clock x. A has only one (initial) location l with the invari-
ant x ≤ 2. Now one can construct a sequence of delay steps with delay values 1, 1/2,
1/4, 1/8, etc. This sequence can be infinite without ever reaching a configuration
with ν(x) = 2.

According to Definition 2.8 (iii), this sequence is not a valid trace. For this
Uppaal model every trace is finite and ends, due to (ii), in the configuration where
A is at l and ν(x) = 2. There are uncountably many such traces.

2.2.1 Collection of Legal Traces

We now associate an Uppaal model M with an (typically uncountable) set T (M)
of timed traces that are either infinite or maximally extended (deadlocked).

Definition 2.10 (Trace Semantics) Let M be an Uppaal model. Then the trace
semantics of M , written T (M), is the set of timed traces according to Definition 2.8.

Note that timed traces are memoryless in the sense that the possible futures do only
depend on a configuration and not on the history. If two traces σ1, σ2 ∈ T (M)
contain the same configuration s, the prefixes leading to s can be interchanged and
the resulting sequences are both again timed traces in T (M). This property is
sometimes called fusion closure.

We note that the Uppaal timed automata model has been equipped with seman-
tics before, in particular in [Pet99]. However, the latter does not correspond to the
implementation of committed locations as implemented in Uppaal 3.0.x, 3.2.x, and
later. In Figure 2.2 the control situation A.F and B.F and C.F can not be reached
according to [Pet99] p. 140 (second bullet point). In the implementation it can be
reached, and our semantics reflects this.

2.3. The Logic Language of Uppaal 49

2.3 The Logic Language of Uppaal

The Uppaal model checking engine allows to automatically establish or refute prop-
erties that are expressed in a specification language. This language is a subset of
timed computation tree logic (TCTL, [ACD93]), where primitive expressions are
location names, variables, and clocks from the modeled system.

We define validity of formulas in the specification language relative to the seman-
tics given in the previous section.

2.3.1 Local Properties

A local property is a condition that for a specific configuration is either true or false.
The basic building blocks are expressions over locations, variables, and clocks. It is
crucial for the efficiency of property verifications that clocks can only be compared
to integer values, see Chapter 4.

Definition 2.11 (Local Property)
Given an Uppaal model 〈 ~A,Vars,Clocks,Channels,Type〉. A formula ϕ is a local
property iff it is formed according to the following syntactic rules.

ϕ ::= deadlock

| A.l for A ∈ ~A and l ∈ LA

| x ./ c for x ∈ Clocks, ./∈ {<, <=, ==, >=, >}, c ∈ Z
| x− y ./ c for x, y ∈ Clocks, ./∈ {<, <=, ==, >=, >}, and c ∈ Z
| a ./ b for a, b ∈ Vars ∪ Z, ./∈ {<, <=, !=, ==, >=, >}
| (ϕ1) for ϕ1 a local property
| not ϕ1 for ϕ1 a local property
| ϕ1 or ϕ2 for ϕ1, ϕ2 local properties (logical OR)
| ϕ1 and ϕ2 for ϕ1, ϕ2 local properties (logical AND)
| ϕ1 imply ϕ2 for ϕ1, ϕ2 local properties (logical implication)

The truth value of a local property can effectively be evaluated in a configuration s.

Definition 2.12 (Validity of a Local Property) A local property ϕ is valid in
a configuration s = (~l, e, ν), in symbols s |=loc ϕ, iff it is valid according to the
following structural definitions.

s |=loc deadlock iff no delay or action steps are enabled in s

s |=loc A.l iff l = li in ~l for A = Ai in ~A
s |=loc x ./ c iff ν(x) ./ c, ./∈ {<, <=, ==, >=, >}
s |=loc x− y ./ c iff ν(x)− ν(y) ./ c, ./∈ {<, <=, ==, >=, >}
s |=loc a ./ b iff e(a) ./ e(b), ./∈ {<, <=, !=, ==, >=, >}
s |=loc (ϕ1) iff s |=loc ϕ1

s |=loc not ϕ1 iff ¬ (s |=loc ϕ1)
s |=loc ϕ1 or ϕ2 iff s |=loc ϕ1 or s |=loc ϕ2

s |=loc ϕ1 and ϕ2 iff s |=loc ϕ1 and s |=loc ϕ2

s |=loc ϕ1 imply ϕ2 iff ¬(s |=loc ϕ1) or s |=loc ϕ2

50 Chapter 2. The Timed Automata Model of Uppaal

E<> ϕ reachability of ϕ
A[] ϕ safety (invariantly ϕ)
E[] ϕ possibly always ϕ
A<> ϕ inevitably ϕ
ϕ --> ψ unbounded response

(corresponds to A[] (ϕ ⇒ A<> ψ)) ϕ,ψ: local properties

Figure 2.3: The Classes of TCTL Formulas that Uppaal can Model Check.

Above, ϕ1 and ϕ2 stand for local properties.

This notion of locality must not be confused with locality in the sense of “local
to one process.” The Uppaal language allows also to declare variables and clocks
locally to one process P and uses the syntax P.var to identify the var that is local
to P . Note that every locally declared variable or clock can be equivalently replaced
by a global one under appropriate renaming of labels. For simplicity we therefore
treat all variables and clocks as global.

2.3.2 Temporal Properties

The five classes of temporal properties that Uppaal can effectively verify are sum-
marized in Figure 2.3. We define the validity of temporal properties via our trace
semantics (Definition 2.10). We chose to give the direct definition of three of the
classes and define the remaining two classes as syntactic duals.

Definition 2.13 (Temporal Properties)
Let M = 〈 ~A,Vars,Clocks,Channels,Type〉 be an Uppaal model and let ϕ and ψ be
local properties. The validity of temporal properties is defined for the classes A[],
A<>, and --> as follows.

M |= A[] ϕ iff ∀{(~l, e, ν)}K ∈ T (M). ∀k ≤ K. (~l, e, ν)k |=loc ϕ

M |= A<> ϕ iff ∀{(~l, e, ν)}K ∈ T (M). ∃k ≤ K. (~l, e, ν)k |=loc ϕ

M |= ϕ --> ψ iff ∀{(~l, e, ν)}K ∈ T (M). ∀k ≤ K. if (~l, e, ν)k |=loc ϕ,

then ∃k′ ≥ k with (~l, e, ν)k
′
|=loc ψ

The two temporal property classes dual to A[] and A<> are defined below.

M |= E<> ϕ iff ¬ (M |= A[] not(ϕ))

M |= E[] ϕ iff ¬ (M |= A<> not(ϕ))

Example 2.14 (Fischer’s Mutex, Continued) The mutual exclusion property
of the Uppaal model in Example 2.1 can be expressed as not (P1.cs and P2.cs).
This is a local property that has to hold invariantly, i.e., it should be true that
Fischer 2 |= A[] not (P1.cs and P2.cs).

2.4. Reflection: What Kind of Tool is Uppaal? 51

Other temporal properties that should hold include, e.g., that every process can
reach the critical section: E<> P1.cs and E<> P2.cs .

2.4 Reflection: What Kind of Tool is Uppaal?

Uppaal has reached its level of maturity via many years of development by the
two academic groups Uppsala and Aalborg. However, the number of contributers is
much larger. Some of the best ideas in the field condensed into optimization options
that were implemented in the tool. We come back to this in Chapter 5

The input language is basically a timed automata model that is extended with
interleaved parallelism and hand-shake synchronization. Syntactic sugar, like vari-
ables, eases the modeling process substantially. The tool is freely available for Linux,
MS Windows, and Sun-OS1 and has a graphical front-end (written in Java). The
download requests indicate that is in fact very popular in teaching.

However, Uppaal is not primarily an educational tool. It has been the strong
ambition of the developers to make it applicable on real-life examples. One symp-
tom for this is the restricted specification language that cuts out a subset of TCTL
that has reasonable chances for efficient treatment. An extended reachability anal-
ysis suffices, and the generation of the region graph [ACD93] is avoided in general,
see Chapter 4.

The success of these efforts is visible along two main axes of large scale appli-
cation: protocols and embedded systems. We point out that the major actors in
the verification of larger examples are all modeling experts with an academic back-
ground. It is crucial to focus on the relevant parts of a system and avoid unnecessary
explosion of the state space.

Uppaal is not a modeling tool for design. The timed automata model is much
more restricted than a formalism that a system developer would use. One of the
important missing features is hierarchical structure.

Most interesting properties in a real-world design language can be expected to
be undecidable. Automated analysis then requires an abstraction step. To establish
soundness of this step, it has to be clear what gets abstracted. In compiler optimiza-
tion, for example, safe over-approximation by replacing data domains by Boolean
values has been very successful (e.g., [NNH99]). Here data is abstracted, but control
structure is preserved.

There is a gap between a design tool and a formalism for automated analysis.
The former tends to have rich data types, powerful synchronization mechanisms,
and hierarchical organization. The latter has the strong obligation to remain in a
decidable fragment.

In the following Chapter, we close a part of this gap. We introduce a hierarchical
timed automata formalism that is as powerful as Uppaal’s language and can in fact
be translated to it.

1http://www.uppaal.com

http://www.uppaal.com
http://www.uppaal.com
http://www.uppaal.com

Chapter 3

Hierarchical Timed Automata

It is a great thing in computer science that so many standards exist;
you can always choose the one you like best.

And should you like none at all, you make a new one.

— Prof. Peter Schulthess, lecturing in Ulm

We define a formalism for timed systems that is halfway between UML stat-
echarts and Uppaal timed automata. Basically we extend timed automata
with a statechart-style hierarchy and parallelism on any level. The resulting
language is described by a formal syntax and given a operational semantics.
Considering the rich set of existing formal statechart-like languages—including
several timed variations—, the introduction of yet another formalisms might
come as a surprise. It is motivated along two dimensions.

First, we are primarily concerned with the formal analysis of models in our
language. In particular, we plan to pursue a model checking approach that
is powerful enough to capture the complete behavior of a system with respect
to a timed logic. To deal with the high computational complexity, we strive
to benefit from the intensive research on the timed automata model. This
dictates to restrict our formalism to decidable primitives that moreover allow
for reasonable efficiency in the exhaustive analysis of a system.

Second, the multitude of variations in the statechart formalism makes the
choice of one formalism not easier. No two variations we know of are compara-
ble. We note a trend to treat statecharts as a high level programming language,
e.g., by attaching C++ code to states and transitions. It is conceivable that
algorithmic treatment of this requires an abstraction step. The anchor of our
formalism is the possibility for fully automatic analysis. As a price, the transla-
tion of other formalisms into it might have to be an abstraction function. This
still allows for a faithful analysis with respect to, e.g., safety properties.

53

54 Chapter 3. Hierarchical Timed Automata

Thus our language is structurally close to full-featured statechart formalisms
and conceptually close to timed automata. The former is incorporated, e.g.,
by the Rhapsody tool, and the latter by the real-time model checking tool
Uppaal.

We fist give an informal introduction and then define the syntax of our
formalism. Next we present the operational semantics. We discuss the encoding
of events and give an argument against the introduction of event queues.

3.1 Syntax of Hierarchical Timed Automata

Hierarchical Timed Automata (HTAs) are motivated by the statechart formalism
(Section 1.2). As the main syntactic restriction the event communication is replaced
by a less expressive hand-shake synchronization. This is necessary to maintain de-
cidability (see Section 3.3).

We introduce the syntax of HTAs first intuitively and then by a formal definition.

3.1.1 A Restricted Statechart Formalism

Since we are primarily interested in formal verification, we restrict the rich and ex-
pressive UML statechart formalism. Timed behavior is reflected by (formal) clocks,
timed guards, and invariants. Our goal is to tailor a formalism where essential
properties remain decidable.

Unlike in UML, where statecharts give rise to the incarnation of objects, we treat
a statechart itself as behavioral entity. The notion of thread execution is simplified
to the parallel composition of state machines. Relationships to other UML diagrams
are dropped.

Our formalism does not support special-purpose modeling constructs, like syn-
chronization states. Some UML tools allow to use C++ as an action language, i.e.,
C++ code can be arbitrarily added to transitions or states. Formal verification of
this is out of scope of this work, we restrict to primitive functions and basic variable
assignments. Event communication is simplified to the case where two parts of the
system synchronize via handshake.

Some of the restrictions we make can be relaxed as explained in Section 3.5.
What we preserve is the essence of the statechart formalism: hierarchical structure,
parallel composition at any level, synchronization of remote parts, and history.

3.1.2 Data Components

We introduce the data components of hierarchical timed automata that are used in
guards, synchronizations, resets, and assignment expressions. Some of this data is
kept local to a superstate S.

3.1. Syntax of Hierarchical Timed Automata 55

Integer variables. Let Var be a finite set of integer variables. Var(S) ⊆ Var is the
set of integer variables local to a superstate S.

Clocks. Let Clocks be a finite set of clock variables. The set Clocks(S) ⊆ Clocks
denotes the clocks local to a superstate S. If S has a history entry, Clocks(S)
contains only clocks that are explicitly declared as forgetful. Other locally declared
clocks of S belong to Clocks(root).

Channels. Let Channels a finite set of synchronization channels. Channels(S) ⊆
Channels is the set of channels that are local to a superstate S, i.e., there cannot
be synchronization along a channel c ∈ Channels(S) between one transition inside
S and one outside S.

Synchronizations. Channels gives rise to a finite set of channel synchronizations,
called Sync. For c ∈ Channels, c?, c! ∈ Sync.

Guards and invariants. A data constraints is a boolean expressions of the form
E ./ E, where E is an arithmetic expression over Var and ./∈ {<,>,=,≤,≥}.
A clock constraints is an expressions of the form x ./ n or x − y ./ n, where
x, y ∈ Clocks and n ∈ Z with ./∈ {<,>,=,≤,≥}. A clock constraint is downward
closed, if ./∈ {<,=,≤}. A guard is a finite conjunction over data constraints and
clock constraints. An invariant is a finite conjunction over downward closed clock
constraints. Guard is the set of guards, Invariant is the set of invariants. Both
contain additionally the constants true and false.

Assignments. A clock reset is of the form x := 0, where x ∈ Clocks. A data
assignment is of the form v := E, where v ∈ Var and E an arithmetic expression
over Var. Reset is the set of clock resets and data assignments.

3.1.3 Structural Components

We give now the formal definition of our hierarchical timed automaton.

Definition 3.1 (Hierarchical Timed Automaton (HTA))
A hierarchical timed automaton is a tuple 〈S,S0, η, type,Var,Clocks,Channels, Inv, T 〉
where

• S is a finite set of locations.
• S0 ⊆ S is a set of initial locations.
• η : S → 2S . η maps a location S to all possible substates of S. η is required
to give rise to a tree structure where a special superstate root ∈ S is the root.
We readily extend η to operate on sets of locations in the obvious way.

• type : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY} is the type func-
tion for locations. Superstates are of type AND or XOR.

• Var,Clocks,Channels are sets of variables, clocks, and channels. They give
rise to Guard, Reset, Sync, and Invariant as described in Section 3.1.2.

56 Chapter 3. Hierarchical Timed Automata

• Inv : S → Invariant maps every locations S to an invariant expression, possibly
to the constant true.

• T ⊆ S × (Guard× Sync×Reset× {true, false})×S is the set of transitions.
A transition connects two locations S and S ′, has a guard g, an assignment r
(including clock resets), and an urgency flag u. S is called the source and S ′

is called the target of the transition. We use the notation S
g,s,r,u
−−−−→ S ′ for this

and omit g, s, r, u, when they are necessarily absent (or false, in the case of
u).

Notational conventions. We use the predicate notation TYPE(S) for TY PE ∈
{AND, XOR, BASIC, ENTRY, EXIT, HISTORY}, S ∈ S. E.g., AND(S) is true,
exactly if type(S) = AND. The type HISTORY is a special case of an entry. We
use HENTRY(S) to capture simple entry or history entry, i.e., HENTRY(S) stands
for ENTRY(S) ∨HISTORY(S).

We define the parent function

η−1(S) :=

{
b, where S ∈ η(b) if S 6= root
⊥ otherwise

We readily extend η−1 to operate on sets of locations, i.e., for S ′ ⊆ S: η−1(S ′) :=
{η−1(S)

∣∣S ∈ S ′}. Furthermore, we use η∗(S) to denote the set of all nested loca-
tions of a superstate S, including S. η−∗(S) is the set of all ancestors of S, including
S. Moreover we use η+(S) := η∗(S) \ {S}.

We introduce η̃ to refer to the children that are proper locations.

η̃(S) := {b ∈ η(S)
∣∣BASIC(b) ∨XOR(b) ∨AND(b)}

We use Var+(S) to denote the variables in the scope of superstate S: Var+(S) =⋃
b∈η−∗(S)Var(b). Clocks

+(S) and Channels+(S) are defined analogously.

3.1.4 Well-Formedness Constraints

We give a set of well-formedness constraints to ensure consistency, grouped as for the
syntactic categories locations, initial locations, variables, entries, and transitions.

Location constraints. We require a number of sanity properties on locations and
structure:
(i) The function η gives rise to a proper tree rooted at root, and S = η∗(root).
(ii) Only superstates contain other locations: AND(S) ∨XOR(S) ⇔ η(S) 6= ∅.
(iii) Substates of AND superstates are not basic: AND(S) ∧ b ∈ η(S) ⇒ ¬BASIC(b).
(iv) No invariants on pseudo-locations: HENTRY(S) ∨ EXIT(S) ⇒ Inv(S) = true.
(v) For every superstate S, at most one exit can be declared to be the default exit .

If existent, the default exit is reachable from every location in S.

3.1. Syntax of Hierarchical Timed Automata 57

Initial location constraints. S0 has to correspond to a consistent and proper control
situation, i.e., root ∈ S0 and for every S ∈ S0 the following holds:

(i) BASIC(S) ∨ XOR(S) ∨ AND(S),
(ii) S = root ∨ η−1(S) ∈ S0,
(iii) XOR(S) ⇒ |η(S) ∩ S0| = 1, and
(iv) AND(S) ⇒ η(S) ∩ S0 = η̃(S).

Variable constraints. We explicitly disallow conflict in assignments in synchroniz-
ing transitions:

It holds that S1
g,c!,r,u
−−−−→ S2, S

′
1

g′,c?,r′,u′
−−−−−−→ S ′2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅, where

vars(r) is the set of integer variables occurring in r. We require an analogous con-
straint to hold for the pseudo-transitions originating in the entry of an AND super-
state.

Static scope: For S1
g,s,r,u
−−−−→ S2 ∈ T , g, r are defined over Var+(η−1(S1)) ∪

Clocks+(η−1(S1)) and s is defined over Channels+(η−1(S1)).

Entry constraints. Let e ∈ S, HENTRY(e). If XOR(η−1(S)), then T contains ex-
actly one transition e

r
−→ S′. If AND(η−1(S)), then T contains exactly one transition

e
r
−→ ei for every proper substate Bi ∈ η̃(η

−1(S)), and ei ∈ η(Bi).

In case of HISTORY(e), outgoing transitions declare the default history locations.

At most one entry of a superstate can be declared to be the default entry . If a
superstate S has a history entry, then every substate B of S has to provide a history
entry or a default entry.

Transition constraints. Transitions have to respect the structure given in η and
cannot cross levels in the hierarchy, except via connecting to entries or exits. The set
of legal transitions is given in Table 3.1. Note that transitions cannot lead directly
from entries to exits. The internal transitions are those made inside one superstate:
from a state to a state, from a state to an exit or from an entry to a state. The
constraint expresses that the parent state must be the same. The entering transition
is from a state to an entry and the fork transition is from an entry to an entry. The
constraints express the transition to a nested state. The exiting and join transitions
are symmetric to entering and fork. The changing transition is from the exit of
a superstate to the entry of another superstate. The constraint states that both
superstates must have a common parent.

Transitions S
g,s,r,u
−−−−→ S ′ with HENTRY(S) or EXIT(S ′) are called pseudo-tran-

sitions. They are restricted in the sense that they cannot carry synchronizations
or urgency flags, and only either guards or assignments. For HENTRY(S), only
pseudo-transition of the form S

r
−→ S′ are allowed. For EXIT(S ′), only pseudo-

transition of the form S
g
−→ S′ are allowed. For EXIT(S) ∧ EXIT(S ′), this is further

restricted to be of the form S −→ S ′.

58 Chapter 3. Hierarchical Timed Automata

Entering
transitions

transitions

Exiting
transitions

Changing
transitions

Internal Comment S S′ Constraint

BASIC BASIC
Internal BASIC EXIT η−1(S) = η−1(S′)

HENTRY BASIC

Entering BASIC HENTRY
and fork HENTRY HENTRY

η−1(S) = η−2(S′)

Exiting EXIT BASIC(S)
and join EXIT EXIT

η−2(S) = η−1(S′)

Changing EXIT HENTRY η−2(S) = η−2(S′)

Table 3.1: Overview on Legal Transitions S
g,s,r,u
−−−−→ S ′.

3.2 Operational Semantics of HTAs

We define now the operational semantics of the hierarchical timed automaton for-
malism. Legal steps between configurations of a HTA give rise to a set of traces.

A configuration captures a snapshot of the system, i.e., the active locations, the
integer variable values, the clock values, and the history of some superstates. Con-
figurations are of the form (ρ, µ, ν, θ), where

ρ : S → 2S captures the control situation. ρ can be understood as a partial,
dynamic version of η that maps every superstate S to the set of active sub-
states. If a superstate S is not active, ρ(S) = ∅. We define Active(S) :=
S ∈ ρ+(root), where ρ+(S) is the set of all active substates of S. Notice that
Active(S)⇔ S ∈ ρ(η−1(S)).

µ : S → (Z)∗. µ gives the valuation of the local integer variables of a superstate
S as a finite tuple of integer numbers. If ¬Active(S) then µ(S) = λ (the empty
tuple). If Active(S) then we require that |µ(S)| = |Var(S)| and µ is consistent
with respect to the value of shared variables (i.e., always maps to the same
value). We use µ(S)(a) to denote the value of a ∈ Var(S). When entering a
non-basic location, local variables are added to µ and set to an initial value (0
by default). We use the shorthand 0Var(S) for the tuple (0, 0 . . . 0) with arity
|Var(S)|.

ν : S → (IR≥0)
∗. ν gives the real valuation of the clocks Clocks(S) defined locally

to the superstate S, thus |ν(S)| = |Clocks(S)|. If ¬Active(S) then ν(S) = λ.
θ reflects the history that might be restored by entering superstates via history
entries. It is split up in the two functions θstate and θvar, where θstate(S)
returns the last visited substate of S—or an entry of the substate, in the case
where the substate is not basic—(to restore ρ(S)), and θvar(S) returns a vector
of values for the local integer variables.
There is no history for clocks at the semantics level, all non-forgetful clocks
belong to Clocks(root).

3.2. Operational Semantics of HTAs 59

We call a configuration where all S in ρ+(root) are of type BASIC, XOR, or AND
a proper configuration.

History. We capture the existence of a history entry with the predicate HasHis-
tory(S) := ∃b ∈ η(S). HISTORY(b). If HasHistory(S) holds, the term HEntry(S)
denotes the unique history entry of S. If HasHistory(S) does not holds, the term
HEntry(S) denotes the default entry of S. If S is basic HEntry(S) = S. If none of
the above is the case, then HEntry(S) is undefined.

Initially, ∀S ∈ S.HasHistory(S)⇒ θstate(S) = HEntry(S) ∧ θvar(S) = 0Var(S).

Reached locations by forks. In order to denote the set of locations reached by
following a fork, we define the function Targetsθ : 2

S → 2S relative to θ.

Targetsθ(L) := L∪
⋃⋃⋃

S∈L

{b
∣∣ b ∈ θstate(S) ∧ HISTORY(S)}∪{b

∣∣S r
−→ b ∧ ENTRY(S)}

If the argument is a singleton, we use the notation Targetsθ(S) for Targetsθ({S}).
Targets∗θ is the reflexive transitive closure of Targetsθ.

Configuration vector transformation. Taking a transition t : S
g,s,r,u
−−−−→ S ′ entails

in general 1. executing a join to exit S, 2. taking the proper transition t itself, and
3. executing a fork at S ′. If S (respectively S ′) is a basic location, part 1. (respec-
tively 3.) is trivial. Together, 1–3 define a proper step. We represent a proper step
formally by a transformation function Tt, which depends on a particular transition
t. The three parts of this step are described as follows.

1. join:
(ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 := ρ[∀b ∈ ρ+(S). b 7→ ∅].
µ is updated to µ1 := µ[∀b ∈ ρ+(S). b 7→ λ].
ν is updated to ν1 := ν[∀b ∈ ρ+(S). b 7→ λ].

If EXIT(S), the history is recorded. Let H be the set of superstates h ∈
ρ+(η−1(S)), where HasHistory(h) holds. Then

θ1state:= θstate[∀h ∈ H. h 7→ HEntry(ρ(h))] and
θ1var := θvar[∀h ∈ H. h 7→ µ(h)].

If ¬EXIT(S) or H = ∅, then θ1 := θ.

2. proper transition part:
(ρ1, µ1, ν1, θ1) is transformed to (ρ2, µ2, ν2, θ2) := (ρ1[S′/S], r(µ1), r(ν1), θ1).
r(µ1) denotes the updated values of the integers after the assignments and
r(ν1) the updated clock evaluation after the resets.

60 Chapter 3. Hierarchical Timed Automata

3. fork:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the control to all
proper locations reached by the fork, i.e., those in Targets∗θ2(S

′). Note that
ρ2(b) = ∅ for all b ∈ η+(S′). Thus we can compute ρ3 as follows:

ρ3 := ρ2

Forall b ∈ Targets∗θ2(S
′)

If ENTRY(b)

Then ρ3(η−2(b)) := ρ3(η−2(b)) ∪ {η−1(b)}

Else ρ3(η−1(b)) := {b} /? BASIC ?/

µ3 is derived from µ2 by first initializing all local variables of the superstates
B in Targets∗θ2(S

′), i.e., µ3(Var(B)) := 0Var(B). If HasHistory(B), θvar(B) is
used instead of 0Var(B). Then all variable assignments and clock-resets along
the pseudo-transitions belonging to this fork are executed to update µ3 and
ν3. The history does not change; θ3 is identical to θ2.

Note that parts 1. and 3. correspond to the identity transformation, if S and S ′ are
basic locations. We define the configuration vector transformation Tt for a transition
t : S

g,s,r,u
−−−−→ S ′:

Tt(ρ, µ, ν, θ) := (ρ3, µ3, ν3, θ3)

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 respectively ν3 of
the transformed configuration corresponding to transition t.

Starting points for joins. A superstate S can only be exited, if all its parallel
substates can synchronize on this exit. For an exit e ∈ η(S) we recursively define
the family of sets of exits PreExitSets(e). Each element E of PreExitSets(e) is itself
a set of exits. If transitions are enabled to all exits in E, then all substates can
synchronize.

PreExitSets(e) :=





⋃
b1,...,bk

£
1≤i≤k

PreExitSets(bi), where

k = |η̃(η−1(e))|, {b1, . . . , bk} ⊆ η+(η−1(e)),
∀i.EXIT(bi) ∧ bi −→ e ∈ T
η−1({b1, . . . , bk}) = η̃(e)




if

EXIT(e)∧
AND(η−1(e))

⋃
m∈η(η−1(e))

PreExitSets(m), where m
g,r
−−→ e ∈ T

∪ {{e}}



 if

EXIT(e)∧
XOR(η−1(e))

{ {} } if BASIC(e)

Here, the operator £ : (22
S
)× (22

S
)→ 22

S
is a product over families of sets, i.e., it

maps ({A1, . . . , Aa}, {B1, . . . , Bb}) to {A1∪B1, A1∪B2, . . . , Aa∪Bb} and is extended
to operate on an arbitrary finite number of arguments in the obvious way.

3.2. Operational Semantics of HTAs 61

Rule predicates. To give the rules, we need to define predicates that evaluate
conditions on the dynamic tree ρ. We introduce the set set of active leaves (in the
tree described by ρ), which are the innermost active states in a superstate S:

Leaves(ρ, S) := {b ∈ ρ+(S)
∣∣ ρ(b) = ∅}

The predicate expressing that all the substates of a state S can synchronize on a
join is:

JoinEnabled(ρ, µ, ν, S) := BASIC(S) ∨
∃E ∈ PreExitSets(S). ∀b ∈ Leaves(ρ, S). ∃b′ ∈ E.

b
g
−→ b′ ∧ g(µ, ν)

Note that JoinEnabled is trivially true for a basic location S.

For the invariants of a location we use a function Invν : S → {true, false} that
evaluates the invariant of a given location with respect to a clock evaluation ν. We
use the predicate Inv(ρ, ν) to express that for control situation ρ and clock valuation
ν all invariants are satisfied.

Inv(ρ, ν) :=
∧

b∈ρ+(root)

Invν(b)

We introduce the predicate TransitionEnabled over transitions t : S
g,s,r,u
−−−−→ S ′ that

evaluates to true, if t is enabled.

TransitionEnabled(t : S
g,s,r,u
−−−−→ S ′, ρ, µ, ν) :=

g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, S) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(S ′)

Since urgency has precedence over delay, we have to capture the global situation,
where some urgent transition is enabled. We do this via the predicate UrgentEnabled
over a configuration.

UrgentEnabled(ρ, µ, ν) := ∃t : S
g,r,u
−−−→ S′. TransitionEnabled(t, ρ, µ, ν) ∧ u

∨ ∃t1 : S1
g1,s,r1,u1
−−−−−−→ S ′1, t2 : S2

g2,s̄,r2,u2
−−−−−−→ S ′2.

TransitionEnabled(t1, ρ, µ, ν) ∧
TransitionEnabled(t2, ρ, µ, ν) ∧ (u1 ∨ u2)

Rules. We give now the action rule. It is not possible to break it in join, action,
and fork because the join can be taken only if the action is enabled and the action
is taken only if the invariants still hold after the fork.

TransitionEnabled(t : S
g,r,u
−−−→ S′, ρ, µ, ν)

action
(ρ, µ, ν, θ)

t
−→ Tt(ρ, µ, ν, θ)

62 Chapter 3. Hierarchical Timed Automata

a!

P

SUB

Q

a?a?

MAIN

Figure 3.1: The a? Transition Exiting SUB Cannot Synchronize with a! in P.

Here g is the guard of the transition and r the set of resets and assignments. The
urgency flag u has no effect here. This rule applies for action transitions between
basic locations as well as superstates. In the latter case, this includes the appropri-
ate joins and/or fork operations.

The delay transition rule is:

Inv(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d
−→ (ρ, µ, ν + d, θ)

where ν + d stands for the current clock assignment plus the delay d ∈ IR≥0 for all
the clocks. Time elapses in a configuration only when all invariants are satisfied and
there is no urgent transition enabled.

The last transition rule reflects the situation, where two action transitions synchro-
nize via a channel c.

TransitionEnabled(t1 : S1
g1,c!,r1,u1
−−−−−−→ S ′1, ρ, µ, ν) S1 6∈ η

+(S2)

TransitionEnabled(t2 : S2
g2,c?,r2,u2
−−−−−−→ S ′2, ρ, µ, ν) S2 6∈ η

+(S1)
sync

(ρ, µ, ν, θ)
t1,t2
−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

We choose the order first t1, then t2 here. This could be inverted, since the well-
formedness constraints ensure that the assignments cannot conflict with each other.
The side conditions S1 6∈ η+(S2) and S2 6∈ η+(S1) prevent synchronization of a
superstate with its own descendants. For example, in Figure 3.1 The a? transition
exiting SUB cannot synchronize with the a! transition in P.

If no action transition is enabled or becomes enabled when time progresses, we
have a deadlock configuration, which is typically a bad thing. If in addition an

3.3. Unbounded Event Queues 63

invariant prevents time to elapse, this is a time stopping deadlock . Usually this is
an error in the model, since it does not correspond to any real world behavior.

Similar to Definition 2.8, we define a set of timed traces for an HTA that cap-
ture its behavior. We explicitly exclude sequences that are zeno or not maximally
extended.

Definition 3.2 (HTA Timed Trace Semantics)
Let M = 〈S,S0, η, type,Var,Clocks,Channels, Inv, T 〉 be an hierarchical timed au-
tomaton. A sequence of configurations {(ρ, µ, ν, θ)}K = (ρ, µ, ν, θ)0, (ρ, µ, ν, θ)1, . . .
of length K ∈ IN ∪ {∞} is a timed trace of M , if

(i) It starts at the initial configuration, i.e, for (ρ, µ, ν, θ)0: S0 = (ρ0)∗(root),
µ = [Var 7→ (0)∗], and ν = [Clocks 7→ 0],

(ii) Every step from (ρ, µ, ν, θ)k to from (ρ, µ, ν, θ)k+1 is derived from the rules
action, delay, and sync,

(iii) (maximally extended finite sequences)
If K <∞, then for (ρ, µ, ν, θ)K no further step is enabled, and

(iv) (non-zeno)
If K =∞ and {(ρ, µ, ν, θ)}K contains only a finitely many k such that (ρk, µk) 6=
(ρk+1, µk+1), then eventually every clock value exceeds every bound (∀x ∈
Clocks ∀c ∈ IN ∃k. νk(x) > c).

The set of timed traces, denoted by Tr(M), is the timed trace semantics for M .

3.3 Unbounded Event Queues

Events are not included in the language of hierarchical timed automata, since they—
together with unbounded event queue—give rise to an infinite state system. We
formalize an undecidability result for this.

In the following we give a minimal definition of a computational structure that
uses an unbounded event queue to trigger subsequent steps. We introduce only one
process that both writes and reads this queue. In more application-oriented settings
the definition would be extended to allow for multiple processes and more then one
such queue. However, we intend to show that even for this restricted definition the
reachability problem is undecidable.

Definition 3.3 (Event System)
An event system is a tuple 〈L,E,T, l0〉, where
• L is a finite set of locations,
• E is a finite set of events,
• T ⊆ L× (E ∪ {})× (E ∪ {})× L is a set of transitions, and

64 Chapter 3. Hierarchical Timed Automata

• l0 ∈ L is the initial location.

We write l
e1/e2
−−−→ l′ for the transition that starts at location l, consumes event e1,

creates e2, and reaches location l′.

A configuration of an event system is a pair (l, Q) ∈ L × E∗, where Q is the
(finite but unbounded) event queue. E∗ is the Kleene-star over E, i.e., the set of
finite strings composed from elements in E. We use λ to denote the empty string or
queue. The concatenation operator · is used to denote head and tail of a queue, e.g.,
e1 ·Q·e2 denotes the queue with e1 at the first position, e2 at the last position, and
Q ∈ E∗ in between.

T gives rise to the binary step relation →T over configurations of an event system
as follows.

(l, Q)→T (l′, Q′) iff l
/
−→ l′ and Q=Q′ , or

l
e1/
−−→ l′ and Q= e1 ·Q

′ , or

l
/e2
−−→ l′ and Q·e2 =Q′ , or

l
e1/e2
−−−→ l′ and Q·e2 = e1 ·Q

′.

A run of an event system is a finite sequence σ =
(
(l0, Q0), (l1, Q1), . . . (ln, Qn)

)

where (l0, λ) = (l0, Q0) and ∀0 ≤ k < n. (lk, Qk)→T (lk+1, Qk+1).

3.3.1 Turing Machines and the Halting Problem

To lead the discussion to an undecidable problem we need to introduce the formal
notion of a Turing computation. The knowledgeable reader may skip to Section 3.3.2.

We introduce Turing machines as non-deterministic automata with a finite num-
ber of control states. An unbounded tape contains two symbols 0 and 1, we use the
symbol # to mark an unread position of the tape. At one position of this tape is a
read/write head. In every step this head reads the symbol under it, writes a symbol,
and then either moves to the left, to the right, or stays at the current position. We
make the assumption that the head never moves over the left bound of the tape
and never writes #. Then the finite string over {0,1} up to the first # completely
describes the tape.

Definition 3.4 (Turing machine)
A Turing machine M is a tuple 〈Q,Σ,Γ, δ, q0, qyes, qno〉, where

• Q is a finite set of states,
• Σ = {0,1} is the input alphabet,
• Γ = Σ ∪ {#} is the tape alphabet,
• δ ⊆ Q× Γ×Q× Σ× {L,N,R} is the transition relation,
• q0 ∈ Q is the starting state,
• qyes ∈ Q is the accepting state, and
• qno ∈ Q is the rejecting state.

3.3. Unbounded Event Queues 65

A configuration of a Turing machine is a tuple 〈q, w, i〉, where q ∈ Q is the current
state, w ∈ {0,1}∗ × {#} is the current tape, and i ∈ IN is the position of the tape
head, i ≤ |w|.

The transition relation δ describes all possible computation steps. E.g., assume
(q,X, q′,X′,L) ∈ δ. Then if in state q and reading X from the tape, the Turing
machine can write X′, move the head to the left, and change to state q′. If the
last part of the tuple is N or R, this indicates that the head does not move (N)
respectively moves to the right (R). There can be multiple elements in δ sharing
the same first two positions (q,X, . . .), thus the behavior is non-deterministic.

A computation of a Turing machine on input w ∈ {0,1}∗ is a sequence of config-
urations starting at 〈q0, w#, 0〉. The sequence of two subsequent configurations is
required to be related via δ. An accepting computation ends in a configuration with
state qyes and a rejecting computation ends in a configuration with state qno.

The language LM accepted by a Turing machineM is the set of strings LM ⊆ Σ∗

such that an accepting computations on input x exists if and only if x ∈ LM.

Turing machines are a simple but very general model of computation. According
to the Church-Turing thesis, any algorithm written in a programming language can
be described as the encoding of a Turing machine.

It is an important observation that Turing machines can be encoded in a finite
string of 0 and 1. Thus a Turing machine M can be part of the input to another
Turing machine. There exists an universal Turing machine MU that be behaves
likeM when the input ofMU contains the encoding ofM. The interested reader is
referred to, e.g., [Sip96].

This ability, sometimes called self-application, gives rise to a number of logical
impossibilities. One of them is the undecidability of a formal language L.

Proposition 3.5 (Halting Problem on Empty Tape is Undecidable)
The halting problem on empty tape is undecidable. I.e., there is no Turing machine
that accepts exactly the encodings of Turing machines that can reach the accepting
state (i.e., “halt”) when started on the empty string as input.

There are several variations of Turing machines and we are choosing our definition
for the sake of brevity of the following reduction. The fundamental properties, in
particular undecidability, proved to be robust with respect to these variations. For
a more detailed exposition we refer to the textbooks [HU80,BDG88,Pap94,Sip96].

3.3.2 Undecidability of Unbounded Queues

We show that basic reachability problems is undecidable for systems with unbounded
event queues. This is our main argument against including general events into the
hierarchical timed automata language.

66 Chapter 3. Hierarchical Timed Automata

Theorem 3.6 (Reachability for Event Systems is Undecidable)
Let E = 〈L,E,T, l0〉 be an event system and l ∈ L. It is undecidable whether there
exists a run for E leading to the configuration (l, λ).

Proof: (by reduction from the halting problem on empty tape, Proposition 3.5)

For a given Turing machine M we construct an event system EM, such that every
computation of M corresponds to a run in EM and vice versa.

The queue of EM is used to encode the tape of M. One special event # marks
the end of the tape and one special event H marks the position of the read/write
head, the current position is right to it. In every step the queue is “wrapped around”
and only a finite part around the read/write head is modified. This is possible with
finite number of locations in the event system.

Reduction. Given a Turing machine M = 〈Q,Σ,Γ, δ, q0, qyes, qno〉. We define the
corresponding event system as follows. EM := 〈L,E,T, l0〉, where

• L :=
⋃
qi∈Q

{qi, q
0→
i , q1→i , qHi , q

0H
i , q1H

i , q
H
i , q

0
i , q

1
i , q

1H
i , q

10
i , q

11
i , q

0H
i , q

00
i , q

01
i ,

q!0i , q
!1
i , q

!00
i , q!01

i , q!10
i , q!11

i , q
!0
i , q

!1
i , q

!00
i , q

!01
i , q

!10
i , q

!11
i , q?i }

∪{l0, l
′
0}, and

• E := {0,1,H,#}.

qi

q0→i

q1→i

q0Hi

q1Hi

qHi

q
00
i

q
01
i

q
0#

i

q
10
i

q
11
i

q
1#

i

q
0
i

q
1
i

q
#

i

0/

1/

H/

1/00/1

1/1

0/0

H/

H/

0/

1/

#/

0/

1/

#/

0/

1/

#/

Figure 3.2: Spool Queue to H.

The transition relation T is defined to
match δ. As an initialization we include

l0
/H
−−→ l′0 and l′0

/#
−−→ q0. This yields the

empty tape.

For every qi ∈ Q we include a segment
like in Figure 3.2. Intuitively, this part
reads the event queue up to the read/write
head (represented by event H). Since the
head can move to the left, it is necessary to
remember the last symbol left of the head
position if it exists. The rest of the tape is
put back into the event queue. The event
marks both the end of the tape and the
start of the tape in the next step.

When the read/write headH is reached,
the transition relation δ is mimicked. Ev-
ery element in δ is encoded in a set of tran-
sitions. This not only determines the next
qj , but also moves the head according to

the entry {L,N,R}. We exemplify this for states q
Y0
i with Y ∈ {0,1}. The encod-

ing works analogously for states q
Y1
i , q

0
i , and q

1
i .

For X,Y ∈ {0,1} and (qi,0, qj ,X,L) ∈ δ the following transitions are in T.

3.3. Unbounded Event Queues 67

q
Y0
i

q!YX
j q!Xj q?j qj

/H /Y /X

0/0

1/1

#/#

For X,Y ∈ {0,1} and (qi,0, qj ,X,N) ∈ δ the following transitions are in T.

q
Y0
i

q
!X
j

q!Xj q?j qj
/Y /H /X

0/0

1/1

#/#

For X,Y ∈ {0,1} and (qi,0, qj ,X,R) ∈ δ the following transitions are in T.

q
Y0
i

q
!X
j q

!
j

q?j qj
/Y /X /H

0/0

1/1

#/#

Now every step in δ ofM corresponds to a sequence of steps from a configuration
(qi, Q) to a configuration (qj , Q

′) in the event system EM—and vice versa. Thus
every computation of M has a matching run in EM. Thus M accepts the empty
word if and only if the location qyes is reachable in a run of EM.

¤

We note that our definition of an event system is somewhat artificial, since event
queues are typically used as means of communication between processes. This is just
for the sake of simplicity. The reduction in the previous prove can be modified to
two processes that alternate in the computation of the next configuration and send
the encoding of the tape to each other.

The presence of clocks is not needed to render the problem undecidable. It is also
well-known that for every Turing machine M there exists an deterministic Turing
machineM′ that accepts the same language. For a deterministic Turing machine, the
construction from Theorem 3.6 yields a deterministic event system. Thus the root
of the undecidability is neither time nor nondeterminism, but the unboundedness of
the event queue.

68 Chapter 3. Hierarchical Timed Automata

Figure 3.3: In Rhapsody, UML Statecharts Communicate via Events.

3.4 Partial Encoding of Events

General events are not included in the language of hierarchical timed automata,
since this would entail the undecidability of reachability problem (Section 3.3).

As a partial remedy we show how to give an approximative encoding of general
events—as they are present in Rhapsody—in hierarchical timed automata. This
corresponds to situations, where the event queue cannot distinguish the order of
arrival.

3.4.1 Events in Rhapsody

In the CASE tool Rhapsody events are a sophisticated means of coordinating par-
allel components. They are not necessarily atomic, but can be classified according
to an event hierarchy. We give a brief summary, the details can be found in [IL00].
There are several ways events can be created, e.g.,

1. along transitions,
2. on entry of superstates,

3.4. Partial Encoding of Events 69

3. on exit of superstates, or
4. with passage of time.

The generation of events happens by code segments like itsMain->gen(eventA).
The syntax explains by the circumstance that Rhapsody translates parts of the
UML model to C++ source code.1 The main unit of the translation is a class
and its behavior as defined via one statechart. However, class dependencies (like
inheritance) and textual annotations also influence the translation.

Events—and also a possible hierarchy on events—are reflected by a collection of
classes derived from a ancestor class OMEvent. In the code generation process the
event generation is translated to a C++ method call on an instance of MAIN, where
an object of a class eventA is created.

Once generated, an event goes into one event queue. There can be several event
queues in one system. As an event reaches the head of a queue, it is dispatched , i.e.,
the event affects all objects in the scope of its queue and possibly entails further
transitions. The event is consumed by this. Events are asynchronous, i.e., time can
pass between the generation of an event and the moment where it is dispatched.

The prime function of events is to trigger transitions. Two transitions are in
conflict, if they cause the same location to be left. E.g., in Figure 3.3 the two
transitions labeled with eventA are in conflict. Some conflicts are resolved by the
structure and an (optional) set of priorities. If more than two transitions are in
conflict and no explicit priorities are defined then only the innermost transition is
taken.2 If a conflict cannot be resolved by this rules, it is unspecified which one of
the transitions is taken.

3.4.2 Respecting Number, Ignoring Order

We give one schema to partially encode events via hand-shake synchronization. The
idea is to count the occurrences of events. As long as a non-zero number of an event
is present, it requires synchronization with all superstates in its scope. This syn-
chronization can be an idle loop or trigger another transition. If another transition
is triggered, this can entail the issuing of another event. If this event is already
present, the number of occurrences is increased by one.

Figure 3.4 exemplifies this for one event a and process S1. The event a can
be received by all XOR superstates S1 · · · Sn. In the XOR superstate S1 only the
transition from l1 to l2 is triggered by the event a. If S1 happens to be in other
control locations, then then the event a has no effect. The synchronization signal
s S1 is just skipped by taking the self-loops. This includes the situations where S1
is not active, i.e, where control is at S1 IDLE.

1Other target languages like C or Java are also possible. The exact nature of the code is
dependent on the setup. In particular one can generate code for special realtime environments, e.g.,
realtime operating systems (RTOSes).

2In the predecessor Statemate it is the other way round: the outermost transitions have priority
by default.

70 Chapter 3. Hierarchical Timed Automata

a absent

a present

a S1 a S2 a Sn

issue a?
na := 1

na == 0

a S1!

a S2! a Sn!

na:=na-1

issue a?
na := na + 1

issue a?
na := na + 1

issue a?
na := na + 1

issue a?
na := na + 1

S1

l1 l2

S1 IDLE

a S1?

a S1?

a S1?

Figure 3.4: Partial Encoding of Event a via a Counter na.

Consider situations where transitions triggered by events carry guards. Then it
has to be made sure that if the guard evaluates to true, those transitions are taken
and a self-loop is enabled otherwise. E.g., assume the transition from l1 to l2 in
Figure 3.4 is guarded by the expression g. Then in the encoding, l1 has a self-loop
synchronizing on a S1? that is guarded by ¬g.

Note that the partial encoding we formulated respects the number, up to arith-
metic overflow. If several events are issued at the same point in time, the order
of arrival is ignored. The intuition here is that in implementations of distributed
systems the precise order of arrival cannot be predicted within one time instance.

Another approach is to maintain finite size queues (also known as bounded
buffers). If the queue is full, no further event can be accepted. As a modeling
primitive this is common, e.g., in SPIN [Hol97]. For Rhapsody statecharts this
approach has been elaborated, e.g., in [Vot02].

3.5 Reflection: Hierarchical Timed Automata

It is perceivable that there is a gap between industrial tools and academic tools.
Industrial tools aim to support the design and production activity of their customers.
The user interface has to be friendly; employees are going to interact with it for weeks
and months. Academic tools aim to support research activity. Implementation is
carried out by student programmers or PhD students. The user interface can be
anything, even textual, since the typical user is either a researcher or a student.

The hierarchical timed automata formalism is neither the first nor the first timed
variation of statecharts. A number of related approaches are compared and classified
in [vdB94]. According to this classification, our formalism would be described by the
column g/t - (-) + - + - + - + o - + - i c + + + - - - + - - d: graphi-

3.5. Reflection: Hierarchical Timed Automata 71

cal/textual, no negated trigger event, no (implicit) timeout event, timed transitions,
no disjunction of trigger events, trigger conditions, no state reference, assignments
to variables, no inter-level transition, history mechanism, operational semantics, not
compositional, with synchrony hypothesis, not deterministic, interleaved concur-
rency, continuous time, globally consistent, causal, instantaneous states, no finite-
ness restriction in number of transitions, no priorities, no non-preemptive interrupt,
preemptive interrupt, no distinction of internal and external events, no local events,
discrete events.

We substitute “hand-shake synchronization” for “events” in van der Beeck’s clas-
sification. The main motivation to construct this new formalism is the closeness to
the Uppaal model; a translation to Uppaal exists, see Chapter 9. We found no
existing statechart variant readily appropriate for this purpose. The major omission
in HTAs with respect to UML statecharts are events.

There are two main difficulties with events. First, the precise notion of events
has not (yet) been given in the UML, though version 1.4 is more specific than its
predecessors. As a side effect some UML tools (e.g., Rhapsody) do no longer
correspond to this definition. Not all the holes are filled. In particular it is not
specified yet if events are instantaneous or are queued and resolve at some later
time. An unambiguous definition is a prerequisite for a formal treatment.

Second, if the event queue can grow without bound model checking is undecidable
in general. This presents a serious problem, since no complete algorithm can be
formulated any more. We argue that this is rather an introduced than an inherent
problem. Due to constrained resources in running applications, the event queue
usually has a bounded size. The exact bound, however, might not be known a
priori. The approach of limiting the size of the event queues is followed in [Vot02].

Another possibility is to reason about event queues that have a certain regular
structure. Sets of queue situations can have a finite encoding, though their cardi-
nality is not finite. Here we refer to the work of Abdulla and Jonsson [AJ96,AJ01].

The work on the HTA formalism is continuing. A graphical editor for the language
is currently under development at Aalborg University. It uses an XML representa-
tion of the described syntax. For practical reasons superstates are not constructed as
primitives but generated from parameterized templates. More on this representation
can be found in [DM01].

To assert the usability of the HTA formalism bigger examples are needed. How-
ever those are tedious to construct without an appropriate editor. We expect that
the HTA formalism further evolves once the generation of examples has been made
easier.

In the context of the AIT-WOODDES project3, the HTA formalism is planned
to be used as an intermediate format. UML statechart models as constructed by the
tool Rhapsody are to be translated to Uppaal via the HTA representation. This

3AIT-WOODDES: Advanced Information Technology—Workshop on Object-Oriented Design
and Development of Embedded Systems. This is a project founded by the European Union, No
IST-1999-10069. See http://wooddes.intranet.gr.

http://wooddes.intranet.gr
http://wooddes.intranet.gr
http://wooddes.intranet.gr

72 Chapter 3. Hierarchical Timed Automata

requires clearly an abstraction step. For once to safely omit code that is part of the
model, and second to approximate events.

Ultimately it would be desirable to make direct use of the structure in terms of
a model checking algorithm. It is conjectured that parts of the structure can be
exploited directly, either by means of compositional analysis or via reorganization,
as performed for a simpler case in Chapter 8. As yet, the maturity of the formalism
has to develop further to justify the investment of a direct implementation.

Part II

Algorithmic Verification of
Real-Time Systems

73

75

There is no time.
There are only clocks.

— A Swedish national diary, town museum Stockholm

The behavior of real-time systems tends to be complex. Some situations occur
only under certain interleavings of interactions. For a human designer this makes
it difficult and tedious to determine whether his design in fact does what it should
do.

In model based development, a digital representation can be analyzed before
a system is built. This helps to document and communicate a design. Failure
scenarios are reproducible, since the model is completely under control of the
developer. The model can also be used to explore the behavior of prototypes, for
example by means of simulation.

76

The approach we follow in this Part is the complete analysis of a system’s
behavior by means of model checking. Throughout we use a dense model of
time, i.e., between any two time instances there is an intermediate one. It has
been noted that modeling time in a discrete fashion can miss reachable states, if
the granularity of time has to be fixed a priori [Alu91].

Dense real-time models are decidable (for certain syntactic restrictions) and
model checking algorithms can be formulated [ACD93]. In the recent years a
number of tools have been developed on this background. To name a few of
them: Epsilon [CGL93], Polka [HRP94], Rt-Cospan [AK95], Rt-Spin [TC96],
Treat [KL96], Kronos [BDM+98], Uppaal [LPY97], HyTech [HHWT97],
CMC [LL98], and SGM [WH98]. All of them originate from academic environ-
ments.

For dense real-time the state space is generally infinite; the decidability results
depend on the fact that it suffices to represent a finite quotient of this space. This
is also known as the symbolic representation of infinite sets. In implementations
the issue how to represent this quotient turns out to be an important factor.

In Chapter 4 we go into the details of forward analysis as implemented in the
tool Uppaal. We outline a symbolic data-structure and two symbolic algorithms,
one for reachability and one for unbounded response. We sketch a correctness
proof for these algorithms.

Model checking algorithms are notoriously consumptive in terms of time and
memory. The success of algorithmic treatment often relies on a number of op-
timizations that tune the efficiency. A number of prominent optimization tech-
niques have been incorporated in the tool Uppaal. It is difficult to predict the
benefit of an optimization. In practice a number of different optimizations have
to be tried to find out what works best for a particular problem. In Chapter 5 we
strive to give an impression of the impact of optimizations. We apply exhaustive
combinations of the optimization options on three classes of benchmark examples
and display the obtained run-time data.

The search for new methods to overcome bottlenecks in real-time model check-
ing is an active field. We contribute two novel techniques to this area. Our first
technique (Chapter 6) is an approximation technique. By adding carefully cho-
sen transitions we compute a safe over-approximation of the systems behavior.
If we can establish a universal property in the approximation, then it also holds
for the original system.

Our second technique (Chapter 7) uses abstractions to compute a coarser
representation of the symbolic state space. This is formulated in the framework
of abstract interpretation. With the omission of the next-step operator from our
logic we are able to incorporate a progress assumption by syntactic means. This
solves the problem of spurious loops in the abstracted system and makes our
technique suitable for liveness properties.

Chapter 4

Symbolic Forward Analysis

There is no such thing as a correct system.

— Bob Kurshan, Bell Labs, at CAV’97

Formally verify everything!

— Ben Brennan, Intel, at CAV’97

The formal verification of real-time systems is a challenging problem. Serious
undecidability results prevent the fully automatic treatment of many interesting
classes of timed system, like skewed clocks, and systems with arbitrary large
event-queues. In decidable formalisms, a number of hardness-results renders
model checking an expensive task.

In practice this is reflected by the notorious inefficiency of model checking
engines that even for small models soon exhaust available machine resources and
the patience of the user. A number of optimization techniques, data structures,
and heuristics was developed that strive to reduce time- and space-consumption
wherever possible.

In this Chapter we discuss the real-time model checking algorithm of Up-

paal. First we introduce a formal framework for the symbolic representation of
configurations and traces, called symbolic state graphs. It suffices to represent
regular sets of clock evaluations that are a generalization of the fundamental
clock region construction [ACD93]. As a data structure to represent these sets,
called zones, we introduce difference bounded matrices (DBMs). We sketch the
model checking algorithms for forward reachability and unbounded response.
This spans the whole specification language of Uppaal. We use symbolic state
graphs to discuss correctness and soundness of the algorithms.

77

78 Chapter 4. Symbolic Forward Analysis

4.1 Symbolic Representation of Traces

In Chapter 2 the semantics of the timed automata model as used in Uppaal is
introduced in terms of a set of traces. Since this set is (typically) uncountable, it
cannot be used algorithmically.

In this section we discuss how to represent this set in terms of a symbolic state
graph. Later (Section 4.3) we use finite symbolic state graphs to describe the model
checking algorithm of Uppaal.

The excessive number of possible traces has its root in the uncountably many
clock evaluations. However, many of theses clock evaluations can be treated uni-
formly.

The basic idea is to allow for the accumulation of clock evaluations that are in
some sense regular. We describe the behavior of an Uppaal model then by a rooted
directed graph. Every node stands for a set of configurations that share the same
discrete part. Every edge stands intuitively for one step; delay steps, however, may
also occur between two configurations in the same node.

Definition 4.1 (Symbolic State Graph)
Let M be an Uppaal model 〈(A1, . . . , An),Vars,Clocks,Channels,Type〉. A sym-
bolic state graph for M is a rooted directed graph G = (VG , EG ,⊥G), such that

• VG ⊆ {(~l, e,ΞClocks)
∣∣ ~l ∈ LA1 × · · · × LAn ,
e an environment for discrete variables of M, and
ΞClocks a nonempty set of clock evaluations for Clocks }

• EG ⊆ VG × VG is the edge relation, and

• ⊥G =
(
(l01, . . . , l

0
n), [Vars 7→ (0)∗],Ξ0

Clocks

)
∈ VG, where [Clocks 7→ 0] ∈

Ξ0
Clocks

.

Our definition of symbolic state graph captures only well-formedness constraints and
no strong connection to M . Some nodes can be connected without corresponding to
a step in the configurations of M . Moreover, G does not necessarily contain every
reachable configuration of M . For example, the graph with no edges and the root
as the only node is a symbolic state graph for M . We need additional conditions
that have to hold for G in order to represent M .

Definition 4.2 (Representing Symbolic State Graph)
Let M be an Uppaal model 〈(A1, . . . , An),Vars,Clocks,Channels,Type〉, and G be
a symbolic state graph for M . G represents M if and only if
∀ (~l 1, e1,Ξ1

Clocks
) ∈ VG . ∀ν

1 ∈ Ξ1
Clocks

:

• if (~l 1, e1, ν1)
α

=⇒ (~l 2, e2, ν2), α ∈ {a, τ},

then ∃ (~l 2, e2,Ξ2
Clocks

) ∈ VG such that
(
(~l 1, e1,Ξ1

Clocks
), (~l 2, e2,Ξ2

Clocks
)
)
∈ EG and ν2 ∈ Ξ2

Clocks
.

4.1. Symbolic Representation of Traces 79

• if (~l 1, e1, ν1)
d

=⇒ (~l 1, e1, ν2),
then either ν2 ∈ Ξ1

Clocks

or ∃ (~l 1, e1,Ξ2
Clocks

) ∈ VG such that
(
(~l 1, e1,Ξ1

Clocks
), (~l 1, e1,Ξ2

Clocks
)
)
∈ EG and ν2 ∈ Ξ2

Clocks
.

The intuition here is that all possible traces are represented. We make this more
precise in the following definition.

Definition 4.3 (Covering)
Let M be an Uppaal model, G = (VG , EG ,⊥G) a symbolic state graph for M , and
T be a set of well-formed sequences for M . We say that G covers T , if for every
σ = {(~l, e, ν)}K ∈ T there exists a sequence of nodes {S}K in G mimicking σ, i.e.,
for every (~l k, ek, νk) with k < K + 1

(i) Sk = (~l k, ek,Ξk
Clocks

) with νk ∈ Ξk
Clocks

, and

(ii) either (Sk,Sk+1) ∈ EG
or Sk = Sk+1.

Proposition 4.4 (Representing Symbolic State Graphs are Covering)
Let M be an Uppaal model and G a symbolic state graph for M . If G represents
M , then G covers T (M).

We note that the covering property is in general a simplification of the behavior of
the Uppaal model. There are well-formed sequences that can be covered but do
not correspond to a behavior of the system.

Example 4.5 Assume an Uppaal model M with one process, one location l,
and two clocks x and y. Location l has the invariant x ≤ 2. Let e∅ be the
empty environment. Then the symbolic state graph G = ({⊥G ,S}, (⊥G ,S),⊥G) with
⊥G = (l, e∅, {[x 7→ 0, y 7→ 0]}) and S = (l, e∅, {ν

∣∣ 0 ≤ ν(x) ≤ 2 ∧ 0 ≤ ν(y) ≤ 2})
represents M . However, the following well-formed sequence is covered by G without
being a timed trace of M .

(l, e∅, [x = 0, y = 0]), (l, e∅, [x = 1, y = 1]), (l, e∅, [x = 2, y = 1])

It is easy to see that for every Uppaal model M there exist symbolic state graphs
that representM . E.g., consider the (uncountably large) symbolic state graph where
every ΞClocks is a singleton, every node in G corresponds to one configuration of M ,
and ever edge corresponds to one legal step.

The important observation is that there exist finite symbolic state graphs. The
region graph construction from [ACD93] is such a symbolic state graph that is apt
for TCTL model checking. The number of nodes in this graph is exponential in
the largest constant and in the number of clocks. For the logical properties we are
interested in a smaller symbolic state graph suffices.

80 Chapter 4. Symbolic Forward Analysis

The representation of M by a symbolic state graph G is always correct in the
sense that every timed trace of M is also covered. As Example 4.5 demonstrates,
it is in general not sound : since also timed traces are covered that do not belong
to M . Later we are going to construct the G with additional properties that imply
soundness (Section 4.3).

First, however, we need to consider the finite representation of sets of clock
evaluations with infinite cardinality. Necessarily only a regularly shaped subset of
all possible sets can be encoded this way.

4.2 Data-Structures for Symbolic Real-Time

Real-time model checking requires that the uncountably many clock evaluations
are represented in a symbolic form. A common way is to use clock constraints to
partition clock evaluations into convex sets.

Difference bounded matrices (DBMs) are one important data structure that pro-
vides an efficient representation of convex sets of slop one. In this section we intro-
duce DBMs and describe some of their important properties.

4.2.1 Regions and Zones

Assume we have a set of n real-valued clocks. Geometrically, every clock evaluation
can be understood as a point in IRn≥0. It is clear that only a quotient of IRn≥0 can be
represented for algorithmic use.

In [ACD93] an answer on how to build this quotient is given. The basis for this
are two fundamental observations.

a. If a clock x or a clock difference x−y exceeds the value of the largest constant
it ever is compared with, then the actual value does not matter any more.

b. If the constants in the system are integers, then all clock evaluations that
agree on the truth values on a finite set of predicates cannot be distinguished
by means of the logic TCTL.

Definition 4.6 (Region1) A region is a set of points in IRn≥0 that agrees in the
all predicates of the form xi ./ const and xi − xj ./ const, ./∈ {<, <=, ==, >=, >}.
Here xi and xj are dimensions of IRn≥0, i 6= j, and const ∈ {−c, . . . , 0 . . . , c}. The
parameter c ∈ IN is called the largest constant.

This definition gives rise to a finite set of regions, dependent on the largest constant
c. Example regions are shown in Figure 4.1, left.

However, the number of regions is excessive. It can be approximated by the
formula (1+c)n · n!

(log2)n+1
, where c stands for the largest constant. However, it is not

always necessary to distinguish all regions. For efficiency reasons we are therefore
going to allow for larger sets, namely convex unions of regions (zones).

1See also Definition 7.8 in Section 7.4.

4.2. Data-Structures for Symbolic Real-Time 81

0 1 x

y

1

y − x ≤ 0 1 ≤ x < 3 ∧ y ≤ 2 ∧ y − x ≤ 0

regions zones: convex unions of regions

Figure 4.1: Regions and Zones in IR2
≥0.

Definition 4.7 (Zone) A zone is a convex union of n-dimensional regions. Here,
convex means that if two points a, b ∈ IRn≥0 are in the zone, then every point on the

line ab are also in the zone.

We note that zones can represent infinite or finite areas of IRn≥0 (Figure 4.1, right).
We require a number of operations on them to manipulate these areas in an algo-
rithm.

4.2.2 Operations on Zones

Let Dc denote the set of zones for largest constant c and B = {true, false} be the
Boolean domain. In our context, the following operations are needed.

• Intersection . ∩ . : Dc ×Dc → Dc
This operation computes the set of points that is contained in both argument
zones. By the convexity condition, the result is again a zone.

• Reset r(.) : 2{1,...,n} ×Dc → Dc
This operation “sets” some of the values to 0. Geometrically this corresponds
to a projection of the zone into a lower dimensional space. E.g., {y}(D) in
IR2
≥0 projects the area D down to the x-axis.

• (possibly restricted) Delay .↑. : Dc × 2
⋃
Li → Dc

The delay operation is a specific need of our application in symbolic model
checking. It can be understood as two steps. First all the upper bounds on
constraints of the form xi ≤ k or xi < k are removed in zone D to yield D′.
I.e., whenever a point a is in D, then for every δ > 0, a + δ · (1, . . . , 1) is in
D′. Second, the invariants of the location vector ~l ∈ 2

⋃
Li are enforced on D′.

Since invariants are conjunctions of the form xi ≤ k or xi < k, the result is

again a zone D′′. We use D↑
~l to denote this D′′.

• Emptiness Test . = ∅ : Dc → B
This test returns true whenever there is no point represented by the zone.

82 Chapter 4. Symbolic Forward Analysis

• Inclusion Test . ⊆ . : Dc ×Dc → B
This test returns true whenever every point of the first zone is also in the
second zone.

• Equality Test . = . : Dc ×Dc → B
This test returns true if both arguments represent the same set of points.

This is not a minimal set of operations. E.g., the equality test can be reduced to two
inclusion tests. It is, however, the set of operations we use in the symbolic model
checking algorithm in the next Section and we list them here as an overview.

As it turns out, all these operations can be implemented efficiently by means of
the following data structure.

4.2.3 Difference-Bounded Matrices (DBMs)

Difference bounded matrices are data-structure to represent n-dimensional convex
geometric areas of slope one. They have been discovered and re-discovered in differ-
ent contexts, we refer to constraint graphs in [Bel58] and square matrices of bounds
in [Dil89].

Definition 4.8 (DBM) A difference bounded matrix (or DBM) is a data-structure
over n variables xi that gives for the pair (i, j) with 1 ≤ i, j ≤ n, i 6= j:

• an upper bound on the difference xi − xj (from Z ∪ {∞}) and
• an extra bit that indicates, whether this bound is strict.

If the bound is∞, the extra bit is not needed. DBMs can naturally represent convex
regions with slope one, i.e., zones. The bounds on clocks of the form x ./ const,
./∈ {<, <=, ==, >=, >}, can be encoded via adding an dummy clock that stands always
for value zero.

Canonicity. A given DBM is not necessarily tight in the sense that all bounds can
be reached. For instance, if the bounds x − y ≤ 2, x ≤ 1, and y ≤ 1 are given,
then x − y can reach at most the value 1. For a given DBM, all bounds can be
tightened by an all-pair shortest path computation (e.g., with the Floyd-Warshall
algorithm [CLR92] in O(n3)). The resulting DBM is a canonical representation
of the zone, in [LLPY97] called the shortest-path closure. Two zones are identical
if and only if their shortest-path closures are identical. Canonical forms allow for
cheap equality checks.

Minimal Representation. An important alternative representation of DBMs is the
one described in [LLPY97,Pet99]. Instead of storing all the constraints, the smallest
system of constrains is memorized that implies the full DBM. It turns out that this
representation is also canonical.

4.3. Forward State-Space Exploration 83

1

2

3

4

5

6

7

8

9

10

11

Algorithm: symbolic reach

input: Uppaal model: M = 〈 ~A,Vars,Clocks,Channels,Type〉
Local Property: ϕ

Passed := {}; Waiting := {(~l0, e0, D
↑~l0
0)}

Repeat

(~l, e, D) := pop(Waiting)

If ∀(~l, e, D′) ∈ Passed.D 6⊆ D′ Then

Passed := Passed ∪ {(~l, e, D)}

Forall enabled ~l
g,a,r
−−−→ ~l′

D′ := r(D ∩Dg) ∩DInv(~l′)
; e′ := a(e)

If D′ 6= ∅ Then

push
(
(~l′, e′, D′↑

~l′), Waiting
)

Until ∃(~l, e, D) ∈ Passed. ∃ν ∈ D. (~l, e, ν) |=loc ϕ /? YES ?/
∨ Waiting = ∅ /? NO ?/

Figure 4.2: Symbolic Reachability Algorithm.

Convexity. One limitation of DBMs is that they always represent convex sets of
points. Therefore the union of DBMs is problematic. DBMs are not closed under
union, i.e., the result of this operation is not necessarily again representable as DBM
(e.g., see Figure 4.3). If the definition of zones is relaxed to allow for non-convex
unions of regions, disjunctions of DBMs are required to represent these sets.

Other Data Structures for Zones. There are other symbolic data structures that
do not feature this problem. The possibly most notable ones are BDD-like data-
structures [Bry86], where tests correspond to traversals of a directed acyclic graph.
The interested reader is referred to the literature on Difference Decision Diagrams
(DDDs) [MLAH99], Clock Difference Diagrams (CDDs) [LWYP99], Region Encod-
ing Diagrams (REDs) [Wan00], and Clock Restriction Diagrams (CRDs) [Wan01].

4.3 Forward State-Space Exploration

Though the state-space of dense real-time interpretations is typically infinite, it can
be be quotiented into a finite number of equivalence classes. A symbolic state graph
(Section 4.1) can be used to keep track of all possible timed traces.

Symbolic forward reachability is an inexpensive algorithm that suffices to estab-
lish the important class of real-time safety properties. An extension of it can be used
to verify unbounded response and thus builds the core of Uppaal’s model checking
engine.

84 Chapter 4. Symbolic Forward Analysis

4.3.1 Symbolic Forward Reachability

An algorithm for symbolic reachability is given in Figure 4.2.2 It operates with
symbolic states of the form (~l, e, D), where D is a zone. Every (~l, e, D) represents
the set of configurations {(~l, e, ν)

∣∣ ν ∈ D}.
The central data-structures are the lists Waiting (the symbolic states to be

explored) and Passed (the symbolic states that have already been explored). We
use the operations pop and push on Waiting, where pop removes the first element
(and returns it as result of the operation) and push inserts a new element at the end
of the list.3

Notation. We use some shorthands here. Dg stands for the clock constraints of
guard g, D

Inv(~l′)
stand for the conjunction of clock constraints of the invariants of

the locations in the location vector ~l′. By our syntactic definition (Section 2.1.1) it
is guaranteed that those clock constraints can indeed be represented by zones.

In line (6) we use the vector notation ~l
g,a,r
−−−→ ~l′ to indicate that this test covers

both action steps and synchronized action steps. Up to two locations in ~l can be
changed in one such step to reach ~l′.

We note that the expression ∃(~l, e, D) ∈ Passed. ∃ν ∈ D. (~l, e, ν) |=loc ϕ can be
evaluated effectively. First one builds the disjunctive normal form ϕ ≡ ϕ1∨ . . .∨ϕm,
where ϕi do not contain any or connectors. For each ϕi a zone Dϕi is constructed
that represent the clock constraints in ϕi (if ϕi has no constraints on clocks, this is
the full IRn≥0). Testing for the the remaining constraints in ϕ is then done for every

ϕi, if D ∩Dϕi 6= ∅.

To assert soundness, we need to observe that the successors are always constructed
in a special way.

Lemma 4.9 (Soundness)
In the algorithm symbolic reach all configurations (~l , e, ν) represented by symbolic
states (~l , e,ΞClocks) inserted in Passed are reachable in M .

Proof: This property holds by induction. Observe that all symbolic states in-
serted in Passed (line 5) have been in Waiting before. They are inserted in lines
(1,9). In line 1, the initial configuration (~l0, e0, D0)} and all the configurations

reachable via delaying, (~l0, e0, D
↑~l0
0), are certainly reachable. The symbolic state

(~l′, e′, D′)} is constructed by (symbolically) taking a transition ~l
g,a,r
−−−→ ~l′, where every

configuration represented by (~l′, e′, D′)} has by induction a reachable predecessor.

Thus also every configuration in (~l′, e′, D′↑
~l′) is reachable.

ÁÁÁ
2This formulation is for the sake of explanation; the implementation in Uppaal applies some

natural optimizations, e.g., if a symbolic state it is detected where ϕ holds, the search is aborted.
3This description corresponds to the implementation of Waiting as a queue, which yields a

breadth-first search of the (symbolic) state space. Implementing it as a stack yields depth-first
search.

4.3. Forward State-Space Exploration 85

A
B

x

C

y

Figure 4.3: The Zone A is Subsumed by the Union of Zones B and C.

Proposition 4.10 (symbolic reach is Sound and Correct)
The algorithm symbolic reach terminates with the correct answer for the query
“M |= E<> ϕ”.

Proof: The algorithm terminates, since there are only finitely many different
symbolic states (~l, e, D). In every execution of Repeat the element inserted in
Passed is new, since the inclusion test (line 4) failed for every entry. Since there
are only finitely many different potential elements in Passed, there are only finally
many executions of the Repeat loop.

The algorithm can be understood as the construction of a symbolic state graph
for M , where the nodes are stored in Passed and the edge relation is not stored
explicitly. Since for a node all possible steps are performed (action and synchronized

action in line 6, delay .↑
~l in line 9), the conditions of Definition 4.2 are met. By

Proposition 4.4 every timed trace in T (M) is covered. Thus if the answer is “No”,
this is correct.

Soundness (answer “Yes”) holds by Lemma 4.9.
¤

4.3.2 Variations of the Inclusion Test

We note that some parts of symbolic reach can be modified without losing soundness
and correctness. In particular the inclusion test in line 4 allows for variations.

Observes that the elements in Passed can represent the same configuration a
multiple number of times. For reachability it suffices to retain from exploring the
successors from a symbolic state (~l, e, D), if every configuration it represents is al-
ready represented by some other symbolic state in Passed. This makes it necessary
to reason about the union of zones, as Figure 4.1 demonstrates: zone A is subsumed
by B ∪ C, but all three zones are pairwise incomparable.

86 Chapter 4. Symbolic Forward Analysis

In Figure 4.2, line (4) can be replaced by
4′ If D 6⊆

⋃
{D′

∣∣ (~l, e, D′) ∈ Passed } Then

However, this test is more expensive, since the DBM data structure used to imple-
ment zones does not support union.

Another variation is to replace the inclusion test by the (cheaper) equality test.
In Figure 4.2, line (4) is replaced by

4′′ If (~l, e, D) 6∈ Passed Then

We can still guarantee termination, since there are only finitely many different sym-
bolic states. However, the size of Passed in a complete state space exploration can
grow considerably.

4.3.3 Liveness Checking

The liveness properties expressible in Uppaal’s logic are A<> ϕ, E[] ϕ, and ϕ --> ψ
(unbounded response), where ϕ,ψ are local properties (see Section 2.3). We describe
only response here (Figure 4.4), since the other two classes can be reduced to it.4

The validity of the local properties ϕ and ψ is central for this algorithm. Therefore
all symbolic states S are split up such that each configuration represented by them
is consistent in the evaluation of ϕ and ψ. We use the notation S [ξ] to attach this
information to the symbolic states. ξ ∈ {¬ψ, ϕ ∧ ψ, ϕ ∧ ¬ψ, ¬ϕ ∧ ψ, ¬ϕ ∧ ¬ψ}.

In lines (4,5,15,16) we use the notation D ∩Dξ to restrict D to the part where ξ
holds; this is a simplification, since in general this part needs to be represented by
a disjunction of zones. We assume that the operations (push, store) are applied for
every element of this disjunction.

The notation ↗ (S) is used to indicate that the zone of S is open to infinity.
Intuitively this means that some configurations represented by S can engage in an
infinite, unbounded number of delay steps. By convexity, in fact all configurations
represented by S then have this property.

The notation ↓ (S) is used to indicate that for some of the configurations repre-
sented by S, there is no further step enabled, i.e., they are deadlocked.

The strategy of the algorithm is as follows. First, construct a symbolic state
graph G =

(
Passed,⇒, (~l0, e0, D0)

)
. This is done such that the configurations

represented by a symbolic state agree on the validity of ϕ and ψ. It is easy to see
that G represents M .

Assume there are reachable configurations, such that ϕ holds. There are precisely
three cases such that ϕ --> ψ does not hold:

1. there exists an infinite timed trace with infinitely many action/synchronized
action steps, such that after reaching ϕ, ψ never holds,

2. there exists an infinite timed trace with finitely many action/synchronized
action steps, such that after reaching ϕ, ψ never holds, or

4A<> ϕ is equivalent to
∧
1≤i≤n Ai.l

0
i ∧

∧
x∈Clocks

x ≤ 0 --> ϕ. E[] ϕ is true if and only if
A<> ¬ϕ is false.

4.3. Forward State-Space Exploration 87

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Algorithm: symbolic response

input: Uppaal model : M = 〈 ~A,Vars,Clocks,Channels,Type〉
Query : ϕ --> ψ

Passed := {}; Waiting := {}; relation ⇒:= {}

Foreach ξ ∈ {ϕ ∧ ψ, ϕ ∧ ¬ψ, ¬ϕ ∧ ψ, ¬ϕ ∧ ¬ψ}

If ∃ν ∈ D↑
~l0
0 . (~l0, e0, ν) |=loc ξ Then

store (~l0, e0, D0)⇒ (~l0, e0, D
↑~l0
0 ∩Dξ)

[ξ]

push
(
(~l0, e0, D

↑~l0
0 ∩Dξ)

[ξ], Waiting
)

Repeat

(~l, e, D)[χ] := pop(Waiting)

If (~l, e, D) 6∈ Passed Then

Passed := Passed ∪ {(~l, e, D)}

Forall enabled ~l
g,a,r
−−−→ ~l′

D′ := r(D ∩Dg) ∩DInv(~l′)
; e′ := a(e)

D′′ := D′↑
~l′

Foreach ξ ∈ {ϕ ∧ ψ, ϕ ∧ ¬ψ, ¬ϕ ∧ ψ, ¬ϕ ∧ ¬ψ}

If ∃ν ∈ D′′. (~l′, e′, ν) |=loc ξ Then

store (~l, e, D)[χ] ⇒ (~l′, e′, D′′ ∩Dξ)
[ξ]

push
(
(~l′, e′, D′′ ∩Dξ)

[ξ], Waiting
)

Until Waiting = ∅

Forall S
[ϕ∧¬ψ]
1 ∈ Passed

If ∃ a loop (S
[¬ψ]
1 ⇒ S

[¬ψ]
2 ⇒ · · ·⇒ S

[¬ψ]
1)

or ∃
(
S
[¬ψ]
1 ⇒ S

[¬ψ]
2 ⇒ · · ·⇒ S

[¬ψ]
n

)
with ↗ (Sn)

or ∃
(
S
[¬ψ]
1 ⇒ S

[¬ψ]
2 ⇒ · · ·⇒ S

[¬ψ]
n

)
with ↓ (Sn)

Then Return No

Return Yes

Figure 4.4: Symbolic Response Checking Algorithm.

3. there exists a maximally extended finite trace, such that after reaching ϕ, ψ
never holds.

It is clear by Proposition 4.4 that all these counterexample traces are covered by G.
However, we need a special property of ⇒ to assert that they are also discovered by
the algorithm.

88 Chapter 4. Symbolic Forward Analysis

Lemma 4.11 (⇒ is a Predecessor Relation)
In algorithm symbolic response, for (~l 1, e1, D1)⇒ (~l 2, e2, D2) the following holds.
For all ν2 ∈ D2 then there exists a ν1 ∈ D1 such that
either (~l 1, e1, ν1)

α
=⇒ (~l , e, ν)

or (~l 1, e1, ν1)
α

=⇒ (~l , e, ν2)
d

=⇒ (~l , e, ν), α ∈ {a, τ}.

Proof: By construction only those configurations are represented via (~l′, e′, D′′ ∩
Dξ)

[ξ] (line 15) that are can be reached from some configuration represented by

(~l, e, D)[χ] via action/synchronized action step (line 10) and possibly a subsequent
delay (line 12).

ÁÁÁ

An immediate consequence of Lemma 4.11 is that all configurations represented by
entries in Passed are reachable.

Proposition 4.12 (symbolic response Sound and Correct)
The algorithm symbolic response in Figure 4.4 terminates with the correct answer
for the query “M |= ϕ --> ψ”.

Proof: We noted before that the constructed symbolic state graph G =
(
Passed,

⇒, (~l0, e0, D0)
)
represents M and thus covers T (M).

For soundness and correctness it suffices to assert that lines 19-21 identify all
traces σ ∈ T (M) that are counterexamples for ϕ --> ψ.

By Lemma 4.11, every path ((~l0, e0, D0) ⇒ · · · ⇒ S
[ϕ∧¬ψ]
1 ⇒ S

[¬ψ]
2 ⇒ · · · ⇒

S
[¬ψ]
1) respectively ((~l0, e0, D0) ⇒ · · · ⇒ S

[¬ψ]
1 ⇒ S

[¬ψ]
2 ⇒ · · · ⇒ S

[¬ψ]
n) indeed cor-

responds to a counterexample trace. Due to the covering property and the allowing
for maximal delay in every symbolic state, all counter-example traces are of one of
these three shapes.

¤

4.4 Reflection: Symbolic Analysis of Real-Time Systems

Due to fundamental (un-)decidability results, modeling languages for real-time model
checking are typically restricted to a decidable fragment. Symbolic techniques al-
low for the treatment of infinite (even uncountable) state spaces. Still, algorithmic
analysis suffers from the high computational complexity. In practice this requires
specialized and well-engineered implementations.

The algorithms we described in Section 4.3 are only conceptual. Their actual im-
plementation in Uppaal applies various optimization steps, e.g., for the unbounded
response the symbolic states are not split according to the local properties ϕ,ψ.

Though the supported logic is rather limited, the classes up to unbounded re-
sponse seem—from a specification point of view—to be the most relevant ones. This
justifies the development of specialized algorithms that do not depend on the capa-
bility of treating the full TCTL.

4.4. Reflection: Symbolic Analysis of Real-Time Systems 89

It has to be noted that this does not eliminate the need for modeling expertise.
Building models with surplus clocks, surplus states, and excessive amount of non-
determinism is easy, and they are typically out of scope for algorithmic verification.
In courses taught using Uppaal, the above seem to be typical beginner mistakes.

The need for abstraction and approximation is reflected in a number of auto-
mated techniques that take this burden from the user to the algorithm. The overall
efficiency of an algorithm depends on many factors. With various options, data-
structures, and strategies available in a tool, it is often difficult (or even impossible)
to find the best choices. For Uppaal we treat this phenomenon in more detail in
the following Chapter.

Chapter 5

Efficiency in Real-Time Model
Checking

It’s exponential all over the place.

— Amir Pnueli, at FMCAD’98

The algorithmic verification of real-time systems suffers from the high com-
putational complexity of the problem. Model checking the full class of TCTL
properties has been shown to be PSPACE-complete in [ACD93]. Surprisingly,
the complexity does not depend on the alternation of quantifiers in TCTL for-
mulas. Timed reachability is already PSPACE-complete [CY91]. The necessity
for discrete data parts contributes potentially further to excessive run-times.

The consequence is twofold. First, it is perceivable that the models indented
for algorithmic verification need to reside on a certain level of abstraction.
Details that are irrelevant to the correctness of the system have to be omitted.
System parts that apparently do not influence the timing behavior should be
captured in an inexpensive way that reflects only the essence of their nature.
In practice this means that a verifiable model cannot be constructed without
understanding of the algorithms that are used to verify it.

Second, verification algorithms have to be tuned to be efficient in many cases.
Often this means that specialized routines exploit structure and regularities of
the model and avoid expensive computations whenever possible. The worst-case
complexity dictates that this cannot succeed for all input models. Nevertheless,
a number of techniques have been developed during the last decade that perform
very well in practice.

Some of these techniques have been implemented in the Uppaal model
checking tool and are available either isolated or in combination. For the
command-line version, verifyta, they correspond to switches that can be set
for individual runs. It is hard to predict which combination yields the lowest
consumption of time or memory.

91

92 Chapter 5. Efficiency in Real-Time Model Checking

In this Chapter we give an overview on the options as present in verifyta

version 3.1.64 (September 2001). The intention is to detect beneficial combi-
nations. For this we consider all combinations of five most influential options
in terms of time and memory consumption. We use three classes of scalable
benchmark examples to give experimental data.

5.1 Optimizations for Real-Time Model Checking

Optimizations aim to render time- or space-consuming steps in the model checking
algorithms more efficient, while not altering the result. In some cases, in particular
with small examples, the application of optimizations can yield longer run-times or
higher memory consumption due to some algorithmic overhead. We briefly review
the techniques that are currently implemented in the Uppaal tool.

5.1.1 Active Clock Reduction (-a)

Active clock reduction was introduced in [DY96] and has been extended to networks
of timed automata in [DT98]. It builds on the observation that in certain control
situations the value of some clocks do not influence future behavior. A sufficient
condition is that a clock is always reset to 0 before its value appears in a guard,
invariant, or part of a local property to be checked.

A pre-computation phase determines for each location vector a set of in-active
clocks. In the reachability analysis the DBMs are only built over the active clocks.
This does not hurt the inclusion check D ⊆ D′ (line 4 in Figure 4.2 on page 83),
since it requires identical discrete parts of the configurations (~l,D) and (~l,D′).

By default, this option is disabled.

5.1.2 Compact DBM Representation (OFF with -C)

Zones of clock evaluations can be represented by difference bounded matrices (DBMs).
The straightforward representation of a DBM for n clocks stores (n+1)2−n integer
values that represent the upper bounds on the differences of every pair of clocks,
including one additional zero clock.

Some of these clock constraints can be redundant, i.e., are implied by other
constraints. In the compact DBM representation, originally introduced as local
reduction [LLPY97], only a minimal equivalent set of constraints is stored. This
minimal set is computed with a O(n3) algorithm.

The experiments in [LLPY97] yield space savings between 68 and 85%. In nine
out of ten cases the optimized algorithm also runs faster, time savings are between
-8 and 78%. This explains by a cheaper inclusion check that has fewer values to
consider when browsing the Passed list.

5.2. Approximation Techniques for Real-Time Systems 93

By default the compact DBM representation is used, the switch -C disables it
explicitly. The -C option is incompatible with convex hull approximation. If -A
is set, this compact DBM representation is automatically set; a possibly set -C is
ignored.

5.1.3 Space Usage Reduction by Smaller “Passed” List (-S 1|2)

The memory consumption of Uppaal depends primarily on the size of the Passed

list. As it has been observed in [LLPY97,Pet99], not all encountered symbolic states
have to be stored in order to guarantee sound termination of the state-space explo-
ration. E.g., whenever control reaches committed locations, these configurations
have to be left immediately. Thus no configuration can contain committed locations
after a time delay. By default (option -S 1) no configurations containing committed
locations are stored in Passed.

The number of stored symbolic states can be reduced even further without sac-
rificing sound termination. It suffices to store certain prominent control structure
elements in the Passed, namely the entry nodes of “dynamic loops”. In [LLPY97]
this is introduced as global reduction. The price for this is a potential increase in
run-time, for the same symbolic states are possibly explored more than once. This
reduction is chosen with -S 2.

The setting -S 1 is the default, option -S 0 disables the space reduction.

5.2 Approximation Techniques for Real-Time Systems

Approximation translates the original problem into a computationally cheaper prob-
lem. In case of a successful run, the property established for the translation also
holds for the original problem. We briefly describe the approximation techniques
implemented in Uppaal, i.e., convex hull and bitstate hashing.

5.2.1 Convex Hull Over-Approximation (-A)

The convex hull technique yields a conservative over-approximation of the reachable
state-space and has first been applied by Howard Wong-Toi [WT94].

In the symbolic state space exploration, one control configuration ~l can be associ-
ated with a large number of clock zones. Since the union of zones is not necessarily
a zone again, many of them have to be stored separately.

The approximation idea now is to subsume all zones associated with one ~l under
the smallest surrounding zone. This surrounding zone can contain clock evaluations
that are not reachable in the original system. In forward reachability analysis, this
yields an over-approximation of the reachable state-space. Thus, if a safety property
(invariant) can be established in the over-approximation, it also holds in the original
system.

94 Chapter 5. Efficiency in Real-Time Model Checking

If the safety property does not hold in the over-approximation, Uppaal’s model
checking engine reports that the property is MAYBE satisfied. Though this tech-
nique is rather coarse, in practice it surprisingly often suffices to establish safety
properties. The granularity could be refined by allowing only the subsumption of
zones that are “close” according to some heuristic.

Convex hull approximation is incompatible with bitstate hashing and enforces
compact data structures (i.e., absence of -C). If both -A and -C are set, the latter
one is ignored.

By default, the convex hull approximation is disabled.

5.2.2 Under-Approximation: Bitstate Hashing (-Z)

This under-approximation technique was introduced by Holzmann [Hol98] in context
of the LTL model checker SPIN [Hol91,Hol97].1 Instead of the full state-space only
a hashed version of it is stored in the Passed list, i.e., one bit per encountered
symbolic state.

With the application of bitstate hashing it is possible to establish the reachability
of a state, but not to refute it in general. If the hash values of two encountered states
collide, the one encountered later is not explored any further, since there is already
a matching entry for it in Passed. This implies that potentially not the whole state
space is expanded, but only a part of it.

The percentage of symbolic states reached by this under-approximation is known
as coverage. There are refinements of bitstate hashing, most notably double hash-
ing [Hol98] that yield a high coverage for economical cost.

In Uppaal a single hash of the complete symbolic state is used for bitstate
hashing. This implies that the subsumption check is in fact an equality check for
the occurrence of the same the same zone for matching discrete parts. This does not
destroy termination or soundness (see Section 4.3.2), but means that before hashing
a potentially much larger number of zones have to be explored than for the exact
analysis.

For most real-time systems, the key to efficient model checking is the specific
treatment of the symbolic part. Therefor this technique got less attention here than
it is in LTL model checking.

Bitstate hashing is incompatible with the convex hull over-approximation. By
default, bitstate hashing is disabled.

5.2.3 Other Approximation Techniques

There is a large number of techniques that can be classified as approximations and
we are not in a position to cover them here. Approximations are expecially useful,
if (a) the computational complexity of a problem is high and (b) many details of the
problem can be safely ignored. In model checking, all details of a system boil down

1See also the SPIN homepage at http://netlib.bell-labs.com/netlib/spin/whatispin.html.

http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://netlib.bell-labs.com/netlib/spin/whatispin.html

5.3. Other Options of the Uppaal Engine 95

to a yes/no answer. The “intuitive complexity” of the state-space is often much
lower than the worst case bound that complexity theoretic results yield [BCM+90].

For real-time systems this has been studied, e.g., in [WT94,HNSY94,TAKB96,
DT98]. Two novel approximation techniques are subject of Chapter 7 and Chapter 6.

5.3 Other Options of the Uppaal Engine

There are some additional options of the Uppaal engine that are neither optimiza-
tions nor approximations. We briefly describe them in the following.

5.3.1 Depth-First Search (-d)

Though the state space of a system is determined by the definition, the number of
symbolic states that represent it can depend on the search order.

In breadth-first search, the enumeration of the symbolic state space proceeds in
layers around the initial state. First all symbolic states reachable in one (symbolic)
step are explored, then all symbolic states reachable in two (symbolic) steps, and so
on. In depth-first search, the last symbolic state encountered is also the next one to
be explored.

The default is to use breadth-first search. Intuitively, this way the zones have a
better chance to remain as large as possible.

5.3.2 Disable Deadlock Checker (-W)

The deadlock checker issues a warning, if an encountered (symbolic) state does not
have a successor for some clock evaluation in the associated zone. This includes
the case, where all possible steps enabled in the future are delay steps (unbounded
delay).

The deadlock check was activated by default until version 3.0.39 (March 2000)
and de-activated in later versions.

5.3.3 Display Warnings as Queries (-Q)

If the deadlock checker detects a deadlock situation, a warning is issued. If this
option is set, this warning contains a logical query. For example, if a deadlock
occurs whenever process P is in location T and the clock x exceeds value 1, the
query might state E<> (P.T and x>1). This query can later be used to generate
a trace leading to the deadlock.

We note that the semantics of deadlocks changed from version 3.2.1 on (29 Oct
2001).

By default, this option is not set.

96 Chapter 5. Efficiency in Real-Time Model Checking

5.3.4 Change Size of Hash Table in “Passed” List (-H size)

The Passed list is implemented as a hash table of fixed size. Collisions are resolved
via re-hashing. The size of the hash-table determines the minimal amount of allo-
cated memory. If the number of encountered symbolic states is significantly larger
than the hash-table size, hash-table lookups become expectedly more expensive by
a factor proportional to the quotient encountered states/hash table size.

The default size of the hash table is 17·609.

5.3.5 Optimize Time Consumptions when Several Properties are Exam-
ined (-T)

With this option, it is possible to verify several properties in the same model checking
run in parallel instead of one after the other. However, this makes it necessary to
store extra information during the computation of the next step.

This option should be switched off if only one property is verified. Is is disabled
by default.

5.3.6 Unpack Reduced Constraint System Before Inclusion Check (-U)

If this option is enabled, the inclusion check (line 4 in Figure 4.2) is performed
in an alternative way: The DBM of the currently explored symbolic state is not
transformed to the minimal corresponding constraint system. Instead, the constraint
system of the Passed list entry is expanded to the full DBM before it is compared
to the current symbolic state.

This option is disabled by default and only possible, if -C is not set.

5.3.7 Do Not Display Copyright Message (-q)

At the beginning of a model checking run, verifyta prints a copyright message to
the standard output. This is suppressed, if the -q option is set.

5.3.8 Run Silently Without Progress Indicator (-s)

If verifyta is called by command line, a rotating ASCII bar is displayed to visualize
progress of the model checking run.

This is suppressed, if this option is set.

5.3.9 Print Diagnostic Trace to Standard Output (-t)

Successful verification of existential properties (E<> and E[]) yields traces that can
be understood as witnesses for the truth-hood of the formula. In case of a E<>ϕ
property, the trace leads to a configurations satisfying ϕ. In case of a E[]ϕ property,

5.4. Run-Time Experiments with Uppaal 97

ϕ will hold in every configuration and the trace will terminate in a loop, guaranteeing
that ϕ potentially always holds.

Dually, for universal properties (A[], A<>, and response), traces can serve as
counter-examples that witness the false-hood of the property at hand.

This option yields the generation of such witness traces whenever appropriate.
By default, this is disabled and merely true or false is reported.

5.3.10 Display Traces Symbolically (-y)

Counter-example traces are detected on symbolic runs, i.e., every symbolic state
corresponds to a—in general uncountable—set of concrete states, since the associ-
ated zone encodes a set of clock evaluations. Analogously, every step in the trace
can correspond to an uncountable set of steps that are treated uniformly.

When displaying a counter-example trace, by default these symbolic states and
steps are instantiated with concrete clock values. If this option is set, however, the
counter-example traces are displayed with symbolic states and symbolic delay steps.

This option can only be enabled in combination with -t.

5.4 Run-Time Experiments with Uppaal

As it is the case for many tools, Uppaal is equipped with a number of verification
options. Typically one has to run experiments in order to find out, which combina-
tion of options works well. Time and space consumption are often tradeoffs.

In this section we aim at contrasting different options and their combination. We
use Fischer’s protocol, the CSMA/CD protocol, and a FDDI token ring protocol as
scalable benchmark examples.

5.4.1 Why Run-Time Comparisons are Problematic

In the search for efficient verification algorithms it is necessary to compare the perfor-
mance of different approaches with each other. For real-time reachability all known
algorithms are worst-case exponential in the number of reachable control situations,
due to the PSPACE-hardness of the problem. Therefore experimental data is used
for the comparison of algorithms. This is problematic for several reasons.

(a) Run-times are machine-dependent. Not only on processor speed matters, but
also main memory, operating system, context switch delay, system load, and
often also on the compiler used.

Comparisons between tools should always use the same machine and configu-
ration.

(b) Performance is heavily dependent on the choice of optimization options and
sometimes subtleties like the order in which processes are declared.

98 Chapter 5. Efficiency in Real-Time Model Checking

(c) Performance is heavily dependent on the sample problem.

(d) The implementation of the sample problems in various tools is often not “iden-
tical”, despite best intentions. Some constructs in one modeling language
might not have an equivalent counterpart in the other one—e.g., Uppaal is
the only tool that allows for committed locations.

What can be considered a meaningful comparison is “best options that a tool has to
offer”. Arguably it matters most, which size of examples you can treat before your
machinery breaks down. As yet, there are no standard benchmark suites for real-time
model checking tools. One first step towards comparable run-time data is making
the input files electronically available. We do this for all run-time experiments in
this Chapter at http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/.

We use only Uppaal for our benchmarks and focus on the effects of different
optimization options. We use verifyta version 3.1.64. It executes on Spark 450
MHz with 4GB main memory under Solaris OS. Time and space consumption for
each run were measured simultaneously with the aid of Johan Bengtsson’s memtime
utility, version 1.2.2

5.4.2 How to Read the Run-Time Charts (Figures 5.5–5.8)

-A use convex-hull approximation
-C disable compact data structures
-S optimize space consumption
0|1|2 0: none, 1: default, 2: most

-a detect active/inactive clocks
-d use depth-first search

Figure 5.1: Command Line Options Used.

We compiled experimental data for
a number of runs of one input prob-
lem in a run-time chart as follows.
For every input problem, all 36 com-
binations of the verifyta command
line options A (yes/no), C (yes/no), S
(0/1/2), a (yes/no), and d (yes/no)
are used, see Figure 5.1—the options
C and A cannot be set at the same
time. Every run is labeled with the
corresponding combination of these letters—read S0 and S2 as -S 0 and -S 2 (-S
1 is the default and thus omitted). The empty label stands for A, C, a, d “no” and
S “1”. In every run the command line options -s (run silently, do not display the
progress indicator) and -W (disable deadlock checker) were also used and are not
listed explicitly. For all runs in this Chapter, the convex hull over-approximation
(A) turns out to be sufficient to infer the respective safety properties.

One run corresponds to one plotted point (center of a circle) in the run-time
chart. The runs are sorted according to run-time (x-axis, in seconds). The y-axis
records the allocated memory in Megabytes. A bold line connects the points for
better readability. Runs exceeding 4 hours time or 800MB memory usage were
aborted; this is indicated by labels of the form “(switches)*”.

2Available at http://www.update.uu.se/%7Ejohanb/memtime.

http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.docs.uu.se/docs/rtmv/uppaal/benchmarks/
http://www.update.uu.se/%7Ejohanb/memtime
http://www.update.uu.se/%7Ejohanb/memtime
http://www.update.uu.se/%7Ejohanb/memtime
http://www.update.uu.se/%7Ejohanb/memtime
http://www.update.uu.se/%7Ejohanb/memtime

5.4. Run-Time Experiments with Uppaal 99

5.4.3 Fischer’s Mutual Exclusion Protocol

One of the more popular benchmarks for real-time is Fischer’s protocol for mutual
exclusion. We note that this example is not very revealing, mainly due to the fact
that in every modeling language the algorithm is implemented slightly differently.

For example, Lamport describes one process of Fischer’s protocol in [Lam87] with
a shared variable x and the following pseudo-code.

repeat

await x = 0 ;

x := i ;

delay

until x = i ;

critical section;

x := 0

In [AL92] Fischer’s protocol is quoted in a similar—but not identical—fashion.

a: await x = 0;

b: x := i;

c: await x = i;

cs : critical section

An upper bound on the delay between a and b and a lower bound on the delay
between b and c is required. There are many combinations, such that mutex holds.

We note that the differences are minor, but of potential relevance. The “delay” is
in both cases a constrained but not clearly specified value. For some implementations
(e.g, DBMs), the concrete value does not matter, while for others (e.g., BDD based
ones) it does. Thus Fischer’s protocol stands in the literature for a whole class of
algorithms and run-time comparisons of tools using this example have to be regarded
with care.

INV: xi <= 2

cs

id == 0 xi := 0

xi <= 2

id := i,

xi := 0

xi := 0

id == 0

xi > 2, id == i

xi := 0,

id := 0

Figure 5.2: Fischer’s Mutex: Process i.

For our benchmarks we use a con-
cretization of the second formalism.
The system consists of N symmetric
processes and one shared variable id.
Every process has one clock xi to mea-
sure the delay. The execution of the
assignment id := i may take up to
2 time units. The critical section is
entered, if after a delay of more than
2 time units id = i holds. We verify
the (true) safety property that no pair of processes is in the critical section at the
same point in time. The run-time charts forN = 2, . . . , 9 are compiled in Figure 5.5.

100 Chapter 5. Efficiency in Real-Time Model Checking

bus idle bus active

bus collision1

INV: x < 26

bus collision2

begin? x := 0

x := 0 end?

x>=26
busy!

x < 26
begin?
x := 0

x := 0 cd1!
x < 26

x := 0
cd2!
x <= 0

s wait

s transmit
INV: x1<=808

s retry
INV: x1 < 52

begin ! x1 := 0

x1 == 808end !
x1 := 0

x1 < 52

cd1 ?

x1 := 0

x1:= 0
begin!
x1 < 52

x1 < 52
cd1 ?x1 := 0

cd1 ?

x1 := 0

busy ?

x1 := 0

cd1 ?
x1 := 0

Figure 5.3: CSMA/CD Protocol: Bus and Sender #1 for N = 2.

5.4.4 CSMA/CD Protocol

In a broadcast network with a multi-access bus, the problem of assigning the bus
to only one of many competing stations arises. The CSMA/CD protocol (Carrier
Sense, Multiple-Access with Collision Detection) describes one solution. Roughly,
whenever a station has data to send, if first listens to the bus. If the bus is idle (i.e.,
no other station is transmitting), the station begins to send a message. If it detects
a busy bus in this process, it waits a random amount of time and then repeats the
operation. A detailed description of the (simplified) model we use is found, e.g.,
in [BDM+98].

In our model, there is one process for the ring (with one local clock x) and one
process for every of the N stations (with one local clock xi), see Figure 5.3. For our
experiments we use the (true) safety property stating that station 1 and station 2
are at longest for 52 time units simultaneously in transmission mode. The run-time
charts for N = 2− 9 are compiled in Figure 5.6.

ring to 1

INV: x<=td

ring 1

INV: x<=td

ring to 2ring 2

tt1!

rt1?
x:=0

tt2!

rt2?
x:=0

z idle z sync
INV: x1 <= SA

INV: y1<=TRTT

z async

y idley sync

INV: x1<=SA

INV: y1<=TRTT

y async

tt1? y1:=0
x1:=0

x1>=SA,z1<TRTT

rt1!

x1>=SA,
z1>=TRTT

rt1!

x1:=0 tt1?
z1:=0

rt1!

x1>=SA,
y1>=TRTT

x1>=SA,
y1<TRTT

rt1!

Figure 5.4: FDDI Token Ring Protocol: Ring and Station #1 for N = 2.

5.5. Reflection: Optimization Techniques for Real-Time Systems 101

5.4.5 FDDI Token Ring Protocol

The FDDI (Fiber Distributed Data Interface) is a fiber-optic token ring local area
network, e.g., described in [Jai94, DT98]. FDDI networks are composed from N
symmetric stations that are organized in a ring.

We use a simplified model of N -ary networks for our benchmarks. One process
models the ring that hands the token in one direction to N symmetric processes that
may hand back the token in a synchronous (high-speed) or asynchronous (low prior-
ity) fashion. The ring process owns a local clock and every station owns three local
clocks (Figure 5.4). The timing constants for this model are 0, 20, and 50*N+20,
i.e., no delay in the token passing of the ring (td), 20 time units for high-speed com-
munication (SA), and maximally 50*N+20 time for the asynchronous token passing
(TRTT).

We verify a (true) safety property stating that the token is not at two places at
the same time. The run-time charts for N = 2− 9 are compiled in Figure 5.7.

5.5 Reflection: Optimization Techniques for Real-Time Sys-
tems

Figure 5.8 lists the switch setting sorted according to the sum of time (respectively
memory) over all runs. We note that the behavior for every single switch is heavily
influenced by presence or absence of other options.

This experimental data comes with two surprises:

1. There are large gaps between best and worst options.
2. Instead of being wildly distributed, the options form “clusters” of nearly iden-

tical run-time behavior.

These clusters are not stable—they are present for one input problem but change in
constellation over different inputs. The one option that consistently yields improved
performance (both time- and memory-wise) is the convex hull over-approximation
(A). In our benchmark examples, the approximation suffices to establish validity
of the safety properties. In the absence of -A, active clock reduction (-a) is in our
experiments always an advantage.

Other than expected, the option -S 2 occasionally yields a larger memory con-
sumption than the weaker optimization -S 1. This can be explained by the need
for (temporary) memory allocation, when parts of the state-space are explored re-
peatedly.

Also other then sometimes predicted depth first search performs sometimes mea-
surably better than breadth-first search. E.g., in Token Ring FDDI dC is faster than
C for N ≥ 4. In the same examples with d vs. the empty switch setting, additionally
the memory consumption of the first is lower.

We also note that the scalable benchmark examples do not seem behave “uni-
form”, in particular Fischer’s mutex protocol surprises with irregularities when

102 Chapter 5. Efficiency in Real-Time Model Checking

scaled up. Note that the clusters of switch settings that give a nearly identical
run-time performance change in Figure 5.5, when the problem is scaled up.

The somewhat bitter conclusion of this run-time comparisons is that it is hard
to predict what will work best. We recommend to try first some of the best option
settings we found, since they behaved well on all three benchmark classes. However,
apart from convex hull approximation, there is no clear pattern indicating what
options to use. Neither can certain combinations be regarded as inefficient a priori.
It remains a burden to the user to find good choices here.

MB

0

0.5

1

1.5

2

2.5

3

3.5

0 0.005 0.01 0.015 0.02 0.025 0.03
Fischer 2 [sec]

aA aS
2

S
0C

S
0d

S
2C

d a aS
0C

aS
0d

C
aS

2A
aS

2C
aS

2d
aS

2d
C

ad ad
C

A A
d

C S
0

S
0A

d
S

2
S

2A
S

2d
C

aA
d

aC aS
0

aS
0A

aS
0d

aS
2A

d

S
0A

S
0d

C
S

2d
dC aS

0A
d

S
2A

d

MB

0

0.5

1

1.5

2

2.5

3

3.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Fischer 3 [sec]

aS
0A

aA
d

aS
0A

d
aS

0d
C

aS
2A

A A
d

S
0A

d
S

2A
S

2A
d

a aA aC aS
0

aS
0d

aS
2

aS
2A

d
aS

2C
ad

C
S

0A
S

0C
S

0d
S

2C
aS

0C
aS

2d
aS

2d
C

ad C S
0

S
0d

C
S

2
S

2d
S

2d
C

dC d

MB

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fischer 4 [sec]

aA S
0A

S
2A

aS
0A

aA
d

aS
2A

A aS
0A

d
aS

2A
d

A
d

S
0A

d
S

2A
d

a aS
0

ad ad
C

aS
0d

aS
2

aC aS
0C

aS
2C

aS
0d

C

S
2C

S
2

S
0

C S
0C

S
0d

d S
0d

C
dC aS

2d
aS

2d
C

S
2d

S
2d

C

MB

0

2

4

6

8

10

12

14

0 5 10 15 20 25
Fischer 5 [sec]

aA A S
0A

aS
0A

S
2A

aS
2A

aA
d

aS
0A

d
A

d
S

0A
d

aS
2A

d
S

2A
d

ad aS
0d

aS
2

a aS
0

aS
2C

ad
C

aS
0d

C
aC aS

0C
S

2
S

2C
S

0

d S
0d

aS
2d

C S
0C

dC S
0d

C
aS

2d
C

S
2d

S
2d

C

MB

0

50

100

150

200

0 500 1000 1500 2000
Fischer 6 [sec]

S
0A

aS
0A

aA S
2A

aS
2A

A aA
d

aS
0A

d
A

d
S

0A
d

S
2A

d
aS

2A
d

aS
2

ad aS
0d

aS
2C

a aS
0

ad
C

aS
0d

C
aS

0C
aC S

2
S

2C
S

0

d S
0d

aS
2d

C S
0C

S
0d

C
dC S

2d

aS
2d

C

S
2d

C

MB

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000 14000
Fischer 7 [sec]

S
0A

aA aS
0A

S
2A

A aS
2A

A
d

aA
d

aS
0A

d
S

0A
d

S
2A

d
aS

2A
d

(S
0C

)*
(C

)*

(a
S

2)
*

(a
S

2d
)*

(a
S

2d
C

)*
(a

S
2C

)*
(a

S
0d

)*
(a

d)
*

(a
S

0)
*

(a
)*

(a
S

0d
C

)*
(a

dC
)*

(a
S

0C
)*

(a
C

)*
(S

2d
)*

(S
2)

*
(S

2d
C

)*
(d

)*
(S

0d
)*

(S
2C

)*
()

*
(S

0)
*

(S
0d

C
)*

(d
C

)*

MB

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000 14000
Fischer 8 [sec]

S
0A

A aA aS
0A

S
2A

aS
2A

S
0A

d
A

d
aA

d
aS

0A
d

S
2A

d
aS

2A
d

(d
C

)*
(S

0d
C

)*
(d

)*
(S

2d
C

)*
(S

0d
)*

(a
S

2C
)*

(S
2C

)*
(a

C
)*

(a
S

0C
)*

(C
)*

(S
0C

)*
(a

S
2)

*
(S

2)
*

()
*

(S
0)

*
(a

)*
(a

S
0)

*
(a

S
2d

)*
(a

S
0d

)*
(a

d)
*

(a
S

2d
C

)*
(S

2d
)*

(a
dC

)*
(a

S
0d

C
)*

MB

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000 14000
Fischer 9 [sec]

A S
0A

aA aS
0A

S
2A

aS
2A

S
0A

d
A

d
aS

0A
d

aA
d

(a
dC

)*
(a

S
0d

C
)*

S
2A

d

aS
2A

d
(a

S
0d

)*
(a

d)
*

(S
0d

C
)*

(d
C

)*
(a

S
2d

)*
(a

C
)*

(a
S

2C
)*

(S
2d

C
)*

(a
S

2)
*

(S
2)

*
(a

S
0)

*
(a

)*
()

*
(S

0)
*

(S
2C

)*
(a

S
0C

)*
(S

0C
)*

(C
)*

(S
2d

)*
(S

0d
)*

(d
)*

(a
S

2d
C

)*

Figure 5.5: Run-Time Charts for Fischer’s Mutex, N = 2, . . . , 9.

MB

0

0.5

1

1.5

2

0 0.005 0.01 0.015 0.02 0.025 0.03
CSMA/CD 2 [sec]

d aA aA
d

aS
0

aS
0A

aS
0d

C
aS

2
aS

2A
d

aS
2d

aS
2d

C
ad ad

C
A A

d
C S

0A
S

0A
d

S
0C

S
2

S
2C

S
2d

C
dC a aC aS

0A
d

aS
0C

aS
0d

aS
2A

aS
2C

S
0

S
0d

C
S

2A
S

2d
S

0d
S

2A
d

MB

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06
CSMA/CD 3 [sec]

a aA aC aS
0A

d
aS

0C
aS

2
aS

2A
aS

2A
d

aS
2C

aS
2d

ad A
d

S
2C

aA
d

ad
C

A S
0C

S
2A

d
S

2d
C

d dC aS
0

aS
0A

aS
0d

aS
0d

C
aS

2d
C

C S
0A

S
0A

d
S

0d
S

2
S

2A
S

2d
S

0
S

0d
C

MB

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
CSMA/CD 4 [sec]

aA aS
2A

A S
0A

S
2A

aS
0A

aA
d

aS
0A

d
A

d
aS

0C
aS

0d
aS

2A
d

S
0A

d
aC aS

2
aS

2C
ad

C
a ad S

2A
d

aS
2d

aS
2d

C
aS

0
aS

0d
C

S
0C

S
2

S
0

C S
2C

S
0d

S
2d

d dC S
0d

C
S

2d
C

MB

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9
CSMA/CD 5 [sec]

S
0A

aA aS
2A

aS
0A

A S
2A

aS
2A

d
aA

d
aS

0A
d

S
0A

d
A

d
S

2A
d

aS
2d

ad a aS
0d

aS
0

aS
2

aC aS
2C

aS
0d

C
aS

0C
aS

2d
C

ad
C

S
2

S
0

C S
2C

S
0C

d S
0d

S
2d

S
0d

C
S

2d
C

dC

MB

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250
CSMA/CD 6 [sec]

S
2A

aA aS
2A

A S
0A

aS
0A

aA
d

aS
0A

d
aS

2A
d

A
d

S
0A

d
S

2A
d

ad aS
2d

aS
0d

a aS
2

aS
0

aS
0d

C
ad

C
aS

2d
C

aS
2C

aS
0C

aC S
2

S
0

S
2C

S
0C

C S
2d

C
S

0d
C

dC S
2d

d S
0d

MB

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000 12000 14000
CSMA/CD 7 [sec]

aS
0A

S
0A

S
2A

A aA aS
2A

aA
d

aS
0A

d
aS

2A
d

S
2A

d
A

d
S

0A
d

ad aS
0d

aS
2d

a aS
0

aS
2

ad
C

aS
0d

C
aS

2d
C

aC aS
0C

aS
2C

S
0

S
2

C S
0C

S
2C

S
2d

C
dC S

0d
C

(S
0d

)*
(d

)*
(S

2d
)*

MB

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000 14000
CSMA/CD 8 [sec]

S
0A

A aS
0A

aA aS
2A

S
2A

aA
d

aS
0A

d
aS

2A
d

S
2A

d
A

d
S

0A
d

(C
)*

(S
0C

)*
(S

2C
)*

(a
S

0d
)*

(a
S

2d
)*

(a
d)

*
(a

S
0d

C
)*

(a
S

2d
C

)*
(a

dC
)*

(a
)*

(a
S

0)
*

(a
S

2)
*

(S
0d

C
)*

(d
C

)*
(S

2d
C

)*
(S

0d
)*

(d
)*

(S
2d

)*
(a

C
)*

(a
S

0C
)*

(a
S

2C
)*

()
*

(S
0)

*
(S

2)
*

MB

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000 14000
CSMA/CD 9 [sec]

S
0A

S
2A

A aS
0A

aA aS
2A

aA
d

aS
0A

d
aS

2A
d

S
2A

d
S

0A
d

A
d

(S
2C

)*
(C

)*
(S

0C
)*

(S
2)

*
()

*
(S

0)
*

(a
S

0C
)*

(a
S

2C
)*

(a
S

2d
)*

(a
d)

*
(a

S
0d

)*
(S

0d
)*

(d
)*

(S
2d

)*
(a

dC
)*

(a
S

0d
C

)*
(a

S
2d

C
)*

(S
0d

C
)*

(d
C

)*
(S

2d
C

)*
(a

)*
(a

S
2)

*
(a

S
0)

*
(a

C
)*

Figure 5.6: Run-Time Charts for CSMA/CD, N = 2, . . . , 9.

MB

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Token Ring FDDI 2 [sec]

aA
d

aS
0

aS
2

ad ad
C

A
d

S
0A

d
S

2A
d

a aC aS
0A

aS
0A

d
aS

0C
aS

0d
aS

0d
C

aS
2A

aS
2A

d
aS

2C
aS

2d
A S

0
S

0d
S

0d
C

S
2A

aS
2d

C

C S
2

S
2d

S
2d

C
dC aA S

0A
S

0C
S

2C
d

MB

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2
Token Ring FDDI 3 [sec]

aS
0A

d

aS
0A

aA
d

aC aS
0

aS
0d

aS
2A

d
aS

2d
aS

2d
C

ad S
0A

d
S

2A
d

aA aS
0C

aS
0d

C
aS

2A
aS

2C
ad

C
aS

2
A

d
S

2A
a A S

0A

S
0

S
0d

d C dC S
0C

S
0d

C

S
2

S
2C

S
2d

C
S

2d

MB

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Token Ring FDDI 4 [sec]

aS
0A

d
aS

2A
d

aA
d

aS
0d

ad
C

A
d

S
0A

d
S

2A
d

aS
0A

aS
0d

C
ad aA aC aS

2A
aS

2d
aS

2d
C

a aS
0

aS
0C

aS
2

aS
2C

S
0A

S
2A

A S
0d

d S
0

S
0d

C
C dC S

0C

S
2

S
2C

S
2d

S
2d

C

MB

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8
Token Ring FDDI 5 [sec]

aA
d

aS
2A

d
aS

0A
d

S
0A

d
A

d
S

2A
d

aA aS
0A

aS
0d

aS
0d

C
ad ad

C
aS

2A
aS

2d
C

aS
2d

a aS
0

aC aS
0C

S
0A

A S
2A

aS
2C

aS
2

S
0d

d S
0

dC S
0d

C
C S

0C
S

2

S
2C

S
2d

S
2d

C

MB

0

2

4

6

8

10

12

14

0 10 20 30 40 50
Token Ring FDDI 6 [sec]

aA
d

aS
2A

d
aS

0A
d

S
0A

d
A

d
S

2A
d

aA aS
0d

ad aS
0A

aS
0d

C
ad

C
aS

2A
aS

2d
aS

2d
C

A S
0A

aS
0

a S
2A

aC aS
0C

aS
2

aS
2C

d S
0d

S
0

S
0d

C
dC S

0C
C S

2
S

2C

S
2d

S
2d

C

MB

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250
Token Ring FDDI 7 [sec]

aA
d

aS
0A

d
aS

2A
d

A
d

S
0A

d
S

2A
d

aS
0d

C
ad aS

0d
aA aS

0A
ad

C
aS

2A
aS

2d
C

aS
2d

A S
0A

S
2A

a aS
0

aC aS
0C

aS
2

aS
2C

S
0d

d S
0

dC S
0d

C
S

2
S

0C
C S

2C

S
2d

S
2d

C

MB

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600
Token Ring FDDI 8 [sec]

aS
0A

d
aA

d
aS

2A
d

S
0A

d
S

2A
d

A
d

aS
0d

aS
0d

C
aA ad ad

C
aS

0A
aS

2A
S

0A
A S

2A
aS

2d
aS

2d
C

a aS
0

aC aS
0C

aS
2

aS
2C

d S
0d

S
0

dC S
0d

C
S

2

S
2C

C S
0C

S
2d

S
2d

C

MB

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Token Ring FDDI 9 [sec]

aA
d

aS
0A

d
aS

2A
d

A
d

S
0A

d
S

2A
d

aS
0d

aS
0A

aS
0d

C
ad ad

C
aA aS

2A
S

0A
A S

2A
aS

2d
C

aS
2d

aS
0

a aC aS
0C

aS
2

aS
2C

d S
0d

S
0

S
0d

C
dC S

2d
S

2

S
2C

S
0C

C S
2d

C

Figure 5.7: Run-Time Charts for Token Ring FDDI, N = 2, . . . , 9.

options Σ sec Σ MB #abort

S0A 195.28 142.49 0
A 196.47 142.49 0

aA 207.56 139.80 0
aS0A 207.70 138.05 0
S2A 225.28 101.05 0
aS2A 237.05 98.30 0
aAd 598.72 125.95 0

aS0Ad 598.95 124.05 0
S0Ad 879.53 129.25 0
Ad 881.96 130.84 0

S2Ad 8070.87 93.05 0
aS2Ad 8860.21 86.01 0
adC 63526.28 2780.84 5

aS0dC 63571.98 2786.47 5
S0C 64260.64 3752.76 5
C 64287.07 3750.15 5

aS0d 66415.87 2218.74 5
ad 66610.91 2217.88 5

aS2d 69106.56 2017.67 5
aC 70575.83 2414.62 5

aS2C 70694.50 2075.55 5
S2C 70905.50 3282.80 5

72544.45 3363.05 5
S0 72701.28 3367.95 5

aS0C 73133.52 2435.20 5
aS2 73157.34 1781.25 5
aS0 73159.30 2055.19 5
a 73194.60 2048.08 5
S2 74687.03 2926.78 5

aS2dC 75250.68 2656.30 5
dC 80940.67 3910.24 5

S0dC 81138.23 3898.49 5
d 87042.08 3450.65 6

S0d 87422.95 3461.20 6
S2dC 95200.66 3309.90 5
S2d 96338.41 3074.81 6

options Σ MB Σ sec #abort

aS2Ad 86.01 8860.21 0
S2Ad 93.05 8070.87 0
aS2A 98.30 237.05 0
S2A 101.05 225.28 0

aS0Ad 124.05 598.95 0
aAd 125.95 598.72 0
S0Ad 129.25 879.53 0
Ad 130.84 881.96 0

aS0A 138.05 207.70 0
aA 139.80 207.56 0
S0A 142.49 195.28 0
A 142.49 196.47 0

aS2 1781.25 73157.34 5
aS2d 2017.67 69106.56 5

a 2048.08 73194.60 5
aS0 2055.19 73159.30 5

aS2C 2075.55 70694.50 5
ad 2217.88 66610.91 5

aS0d 2218.74 66415.87 5
aC 2414.62 70575.83 5

aS0C 2435.20 73133.52 5
aS2dC 2656.30 75250.68 5
adC 2780.84 63526.28 5

aS0dC 2786.47 63571.98 5
S2 2926.78 74687.03 5
S2d 3074.81 96338.41 6
S2C 3282.80 70905.50 5

S2dC 3309.90 95200.66 5
3363.05 72544.45 5

S0 3367.95 72701.28 5
d 3450.65 87042.08 6

S0d 3461.20 87422.95 6
C 3750.15 64287.07 5

S0C 3752.76 64260.64 5
S0dC 3898.49 81138.23 5
dC 3910.24 80940.67 5

Figure 5.8: Different Option Settings, Sorted According to Accumulated Time and
Memory Consumption Over the Benchmark Examples Fischer 2-9, CSMA/CD 2-9,
and Token Ring HDDI 2-9. #abort is the Number of Runs That Were Aborted;
Those Runs Would Consume More Than 4 Hours Time or 800 MB of Memory to
Complete.

Chapter 6

The Model Augmentation
Technique

Any intelligent fool can make things bigger, more complex, and more violent. It
takes a touch of genius—and a lot of courage—to move in the opposite direction.

— Ernst F. Schumacher

Model augmentation is an approximation technique with the potential to dras-
tically improve the symbolic analysis of real-time systems. It is beneficial, if
the system exhibits repetition of control situation over time under regularities
that can be derived from the control structure of the isolated processes.

The state-space exploration of real-time systems yields a number of sets
of clock evaluations. Often the granularity of these sets is unnecessarily fine
and exhibits regularities. With model augmentation certain regularities can be
approximated effectively. If two configurations match modulo time delay, the
later one (with respect to time) might require a large number of transitions to
be taken, before it is finally reached. It can be reached in a smaller number of
steps via a shortcut-like addition in the model.

The problematic part is to detect regularities in the symbolic state space
exploration and find the appropriate shortcuts. In general this cannot be easier
than exploring the state space itself. However, in certain scenarios the syntactic
structure of the model suffices to find beneficial additions. For example, this
is the case when a scheduler dictates repetition of similar configurations over
time.

Model augmentation always entails an increase of the state space. Never-
theless, the number of symbolic states that have to be explored can be smaller,
because many small sets of clock evaluations can be subsumed by one large set.
We illustrate this phenomenon by applying of our technique to a bricks sorter
model.

107

108 Chapter 6. The Model Augmentation Technique

Since the model itself is changed, not every property established in the
modified model also holds in the original one. Safety properties that hold for
the modified model carry over to the original one. With a slight modification
in the execution semantics, the technique is even conservative with respect to
those liveness properties that rely on the universal quantification over timed
traces.

6.1 Adding Parts to Uppaal Models

Model augmentation relies on a phenomenon that is peculiar for symbolic real-time
model checking. Repetition of control situations in the exploration of the model can
lead to a large number of small zones that are merely shifted by small time values.
Adding carefully selected transitions to the model can construct a “shortcut” that
allows to subsume these small step by one large time delay.

In this Section we elaborate this idea to a formal definition.

Recall the definition of Uppaal models from Section 2.1 and the description of the
forward state space exploration in Section 4.3. The algorithmic treatment relies on
the storage of symbolic states of the form (~l, e, D), where ~l, e is the discrete part
of the state and the zone D encodes a set of clock evaluations. Two zones are
only comparable in the reachability algorithm (Figure 4.2), if one is contained in
the other. If the set of zones associated with the same discrete part shows other
regularities, these are not exploited. For some models a particular regularity exist:
the zones are shifted by a certain time delay. For example, for one clock x the zones
representing 0 ≤ x ≤ 1, 2 ≤ x ≤ 3, 4 ≤ x ≤ 5, etc, could occur. In the symbolic
exploration these yield separate entries in the Passed list.

The reason for these regularities could be that the model in fact waits for a certain
time delay k to be exceeded. In one step, however, only a small delay is allowed;
after this the clock value is compared to k. If k is large with respect to the delay in
one step, a large number of steps is necessary.

In certain scenarios this value k is known. For example, if a scheduler is present
that assigns blocks of execution time to a set of tasks, the next execution frame
starts after time k. Now taking a number of small steps to reach k corresponds to
one actual behavior of the system that we intend to approximate. Under certain
conditions the sequence of delay steps might not be completed, e.g., if an interrupt
occurs. Then it is dangerous to simplify the behavior to “delay until time k”, since
this potentially introduces an error.

Our suggestion is to allow for the option of skipping to the value k without
enforcing it. In practice this means that extra transitions are added to the model in
a careful manner. Every step that has been possible before should also be possible
after the modification.

How can strictly adding to the behavior of the model be of help? To understand
this, one has to recall that the symbolic state space can be expanded in a breadth-first
manner. If the next possible steps from the zone 0 ≤ x ≤ 1 yield both 2 ≤ x ≤ 3 and

6.1. Adding Parts to Uppaal Models 109

2 ≤ x ≤ k, then the former successor is subsumed by the latter one. Algorithmically
this means that 2 ≤ x ≤ 3 no longer needs to be explored, since it is already treated
by the exploration of 2 ≤ x ≤ k. If there is a time between 3 and k such that different
behavior—say, an interrupt—occurs, this interrupt is explored as a successor of the
symbolic state with zone 2 ≤ x ≤ k.

6.1.1 Formal Definition

We define the transformation of an original Uppaal model as a tuple that contains
additional transitions and locations.

Definition 6.1 (Model Augmentation)
Let M = 〈 ~A,Vars,Clocks,Channels,Type〉 be an Uppaal model. The tuple A =

〈li
g,~a
−−→ l′, LA, TA,TypeA〉 is a model augmentation, if the following holds.

• li ∈ Li for some process Ai that is part of ~A, where we require o(li);
we call li the augmentation point of A,

• g a guard,
• ~a a list of assignments,
• l′ ∈ LA, LA a set of fresh locations, LA ∩ (

⋃
Li) = ∅,

• TA a set of transitions, such that all sources are in LA and all targets are in
LA ∪

⋃
Li, and

• TypeA : LA →{o, u, c} the type function for the fresh locations.

Then AugA(M) is the Uppaal timed automata model 〈 ~A′,Vars,Clocks,Channels,
Type′〉 that enriches M in the following sense:

1. ~A′ = A1, . . . , Ai−1, A
′
i, Ai+1, . . . , An, with

A′i = 〈Li] LA, Ti] TA] {li
g,~a
−−→ l′},Typei] TypeA, l

0
i 〉,

1

2. Type′ extends Type by mapping locations lA ∈ LA to TypeA(lA).

We call AugA(M) the augmented model.

It is almost obvious that this modification is sound for safety. The key observation is
that for augmentations returning to the original control location after some carefully
selected time delay, this modification improves model checking time.

Introducing additional loops can be understood as “parking” a process until some-
thing relevant happens or, more precisely, until some condition depending on a tim-
ing constraint is met. We illustrate this with a somewhat artificial example.

Example 6.2 (Delay Loop) Consider an Uppaal model M with a single pro-
cess P (Figure 6.1). P performs a number of delay loops of duration SMALL, and
leaves the loop when a total delay LARGE was reached. When the property E<> P.QUICK

1The symbol] denotes disjoint union.

110 Chapter 6. The Model Augmentation Technique

M Aug
A
(M)

LARGE #explored time [sec] memory [KB] #explored time [sec] memory [KB]

10 8 0.01 376 9 0.01 448

100 35 0.01 440 9 0.01 376

1000 305 0.04 424 9 0.01 440

10·000 3·005 1.51 1·704 9 0.01 440

100·000 30·005 175.21 5·440 9 0.02 416

1·000·000 300·005 22·449.94 42·792 9 0.02 400

Table 6.1: Time and memory consumption for parameters SMALL := 10 and LARGE

variating. All measurements are made using the Uppaal model checking engine
version 3.1.57 executing on a 300 MHz UltraSPARC-II processor, with breadth-first
search and active clock reduction.

is verified in forward state space exploration, a large number of these delay loops are
explored, before it is established that the location QUICK indeed cannot be reached.
Figure 6.1 shows the augmented model AugA(M) on the right, where

A =
〈
T

x <= LARGE
−−−−−−−→ AUGMENT, {AUGMENT[Inv: x <= LARGE]} , {AUGMENT −→ S}

〉
.

The augmented process can be understood to “park” in location AUGMENT until time
has progressed enough to pass the guard x > LARGE.

ST

y <= 0

QUICK
y <= SMALL

y := 0
x > LARGE

x < 10

x <= LARGE

y == SMALL

ST

y <= 0

QUICK
y <= SMALL

AUGMENT
x <= LARGE

y := 0
x > LARGE

x < 10

x <= LARGE

y == SMALL

x <= LARGE

Figure 6.1: The original process P (left), and P with model augmentation A (right).
x and y are clocks, the initial location S is urgent. In both cases location QUICK

cannot be reached for constants LARGE≥ 10.

Table 6.1 shows data for forward reachability analysis with Uppaal. We model
check the safety property A[] not P.QUICK. Since this property holds, the com-
pete state-space is explored symbolically. The number of explored symbolic states
in the original model with process P (left) increases linearly in the parameter LARGE,
whereas this number stays constant when AugA(P) (right) is used.

6.2 Soundness of Model Augmentation

We are now ready to state and prove the soundness of the model augmentation
technique.

6.2. Soundness of Model Augmentation 111

Theorem 6.3 (Soundness) LetM = 〈 ~A,Vars,Clocks,Channels,Type〉 be an Up-

paal timed automaton model and ϕ be a local property for M . Then for any model

augmentation A = 〈lA
g,~a
−−→ l′

A
, LA, TA〉 with lA ∈ Li for some i, the following holds:

M |= E<> ϕ ⇒ AugA(M) |= E<> ϕ .

Proof: We show that T (M) ⊆ T (AugA(M)). For this it suffices to show that for
any configuration s = (~l, e, ν) reached in M , every enabled step is also enabled in
the corresponding configuration sA = (~l, e, ν) in AugA(M).

Assume a simple or synchronized action step is enabled in s. For every transition
of M , there is an equivalent transition in AugA(M). By Definition 6.1, o(lA), thus

¬c(lA) and the transition lA
g,~a
−−→ l′

A
has no precedence over other action steps. Since

~l, e, and ν of s and sA are identical, the same simple or synchronized action step is
then enabled in sA.

Assume a delay step of duration d is enabled in s. Then conditions 1. through
4. from Definition 2.7 are met. For sA, the conditions 2 and 4 then also hold true,
because ~l, e, and ν are identical for s and sA. Condition 1 is met, because no action

step leaving an urgent location is enabled in s. o(lA) entails ¬u(lA), thus lA
g,~a
−−→ l′

A

does not introduce an additional one for sA.

As for condition 3, lA
g,~a
−−→ l′

A
does not carry a synchronization by definition. Thus

no synchronization on an urgent channel can be enabled in sA, unless it was also
enabled in s, which is not the case.

Thus a delay step of duration d is also enabled in configuration sA, completing
the proof.

¤

Corollary 6.4 (Conservative for Safety) Let M be an Uppaal timed automa-
ton model and ψ be a local property for M . For a model augmentation A for M :

AugA(M) |= A[] ψ ⇒ M |= A[] ψ .

6.2.1 Suitable Augmentations

Though not formally required, model augmentations have to return to the original
control structure. Otherwise they never yield an improvement.

Model augmentation adds both to the state space and to the level of non-
determinism. In general this is a bad thing. The modification is only beneficial,
if the additional loop cuts out long and tedious repetitions of control sequences that
are only distinguishable by the passage of time. I.e., repetitions modulo a certain
clock shift must exist. It is necessarily to apply augmentation in all processes of the
model before this phenomenon can be exploited.

It is crucial that the newly introduced loop is taken early in the state space explo-
ration. In forward reachability analysis this can be achieved by using a breadth-first
search order. Then one augmented loop is explored before the concrete control re-
turns to the augmentation point. A more rigorous possibility is to modify the model

112 Chapter 6. The Model Augmentation Technique

checking algorithm in such a way that the transitions starting model augmentations
are explored first. E.g., in the algorithm in Figure 4.2, Passed can be implemented
as a priority queue. Symbolic states where the discrete part contains locations from
the augmentation can be moved to the front of the queue and thus are explored
earlier.

The challenges for successful model augmentation are

1. To find promising augmentation points,
2. To identify suitable delays, and
3. To construct conditions that should trigger a return to the original control

structure.

In Section 6.4 we exemplify this on a medium sized example with two parallel tasks,
where a Round-Robin scheduler dictates repetitions over time.

6.3 Model Augmentation for Universal Path Properties

Universal path properties are the fragment of TCTL [HNSY94], where a property
can be refuted by a single counter-example trace. We extend our model augmen-
tation technique to be conservative with respect to this richer set of properties. In
order to preserve deadlocks, we modify the transition relation relative to the model-
augmentation.

Definition 6.5 (Universal Path Property)
Universal path properties ζ are formulas of the following syntax.

ζ ::= A[]ζ
∣∣ A<>ζ

∣∣ ζ ∨ ζ
∣∣ ζ ∧ ζ

∣∣ (ζ)
∣∣ ϕ

Here, ϕ is a local property (see Definition 2.11).

Note that negation is only allowed at the local property level. In particular the
definition of unbounded response, A[]

(
ϕ⇒ A<>ψ

)
, is equivalent to A[]

(
¬ϕ∨A<>ψ

)

and thus is a universal path formula.

The operator A<> expresses inevitability: at some point in the future, some prop-
erty ζ will necessarily hold. A<> ζ is violated, if there exists either an infinite trace
not containing a configuration, where ζ holds, or some maximally extended finite
trace that does not contain a configuration where ζ holds.

Definition 6.6 (Semantics of Universal Path Properties)
A trace σ = (s0, s1, . . .) ∈ T (M) satisfies an universal path formula ζ at position i,

6.3. Model Augmentation for Universal Path Properties 113

in short (σ, i) |= ζ, according to the following rules.

(σ, i) |= A[]ζ iff ∀j ≥ i. (σ, j) |= ζ
(σ, i) |= A<>ζ iff ∃j ≥ i. (σ, j) |= ζ
(σ, i) |= ζ1 ∨ ζ2 iff (σ, i) |= ζ1 or (σ, i) |= ζ2
(σ, i) |= ζ1 ∧ ζ2 iff (σ, i) |= ζ1 and (σ, i) |= ζ2
(σ, i) |= (ζ) iff (σ, i) |= ζ
(σ, i) |= ϕ iff si |=loc ϕ

Again, ϕ is a local property and thus does not contain path quantifiers.
An Uppaal model M satisfies a universal path formula ζ, if for all traces σ =

(s0, s1, . . .) ∈ T (M), (σ, 0) |= ζ.

Applying model augmentation with universal path properties raises a technical prob-
lem. It could be the case that the new transition at the augmentation point allows
to escape from a deadlock situation, where no further action transitions are possible.
In this situation, A<> properties in the augmented model could hold, though they
do not for the original system.

The solution is conceptually simple. We require that in the augmentation point,
the added transition can only be taken, if another action transition can be taken as
well. We formalize this as follows.

Definition 6.7 (Augmented Path Semantics) Let M be an Uppaal model

and A = 〈li
g,~a
−−→ l′, LA, TA,TypeA〉 a model augmentation of M . We define the set

of weak traces of AugA(M) as the subset of T (AugA(M)) (see Definition 2.8) that
is generated by the following side condition:

in a configuration (~l, e, ν) with li ∈ ~l, the transition li
g,~a
−−→ l′ is only enabled,

if another action or synchronized action transition is enabled.

All traces containing steps that violate this condition are removed from T (AugA(M))
to yield the set T A(AugA(M)). We refer call T A(AugA(M)) the augmented path
semantics of M relative to A. We write AugA(M) |=A ζ, if and only if for all traces
σ = (s0, s1, . . .) ∈ T

A(AugA(M)), (σ, 0) |= ζ.

For example, in the symbolic response algorithm in Figure 4.4 this side condition
would change line 10 to

10′ Forall enabled ~l
g,a,r
−−−→ ~l′ where ∃~l′′ from ~L \ LA. enabled ~l

g′′,a′′,r′′
−−−−−→ ~l′′

∨ ∃lA ∈ ~l. lA ∈ LA

Theorem 6.8 (Approximation of Universal Path Properties)
Let M be an Uppaal timed automaton model and ζ an universal path property. For

arbitrary model augmentations A = 〈li
g,~a
−−→ l′, LA, TA,TypeA〉:

AugA(M) |=A ζ ⇒ M |= ζ .

114 Chapter 6. The Model Augmentation Technique

Proof: It suffices to show that T (M) ⊆ T A(AugA(M)).
Note that o(li) and the added transition does not carry synchronization labels.

Thus the of an additional transition from li does not prevent any originally possible
action or delay step.

If σ ∈ T (M) is an infinite trace, then it is also present in T A(AugA(M)). If
σ ∈ T (M) is finite—and thus maximally extended, see Definition 2.8 (ii)—, then it
is no prefix of a trace in T A(AugA(M)) by Definition 6.7. Thus σ ∈ T A(AugA(M)).

¤

Example 6.9 (Liveness in Delay Loop)
For the Uppaal model M with the single process P in Figure 6.1:

AugA(M) |=A A[] ((not P.T) or A<> P.S),
and thus M |= A[] ((not P.T) or A<> P.S).

Note that whenever transition T → AUGMENT is enabled then one of the original
transitions in M is also enabled (due to the invariant y ≤ 0 at T). Thus the side
condition in Definition 6.7 is always fulfilled for T → AUGMENT and T (AugA(M)) =
T A(AugA(M)).

6.4 Bricks Sorter Example

We demonstrate how to apply our model augmentation technique on a special class of
examples, namely Uppaal models of task-based LEGO RCXTM programs. These
programs can be automatically translated to Uppaal models. We use the bricks
sorter example from [IKL+00] as a case study.

The bricks sorter model is augmented in all places, where control loops in the
structure were detected. For safety-properties, this yields a speed-up in terms of
model checking time.

6.4.1 The Bricks Sorter Model

The bricks sorter (Figure 6.2) is a machine consisting of a conveyor belt, a light
sensor, and a kick-off arm. Red and black bricks are transported on the conveyor
belt past the sensor which is sensitive enough to distinguish the two colors. Some
time later, the kick-off arm can push a brick off the belt. A controller coordinates
sensor and kick-off arm and tries to ensure that every black brick is pushed off, while
every red brick is allowed to pass.

In a physical implementation, this system was built in LEGO with a RCXTM

Mindstorm micro-controller as the control unit. This controller executes up to ten
tasks that are organized by a deterministic scheduler in Round-Robin fashion. Two
tasks main and kick-off are used in the RCXTM program, which are translated to
three Uppaal processes Scheduler, RCX0 main, and RCX0 kick off (see [IKL+00]).
Three processes black brick, black brick2, and kick off arm are added by hand
to model the environment. The process black brick models a black brick passing

6.4. Bricks Sorter Example 115

? !
Kick−Off ArmSensor Processes of Sorter:

RCX model Scheduler

RCX0 maintask
RCX0 kick off task

Environment black brick

black brick2

kick off arm

Hurry Dummy

Figure 6.2: Schematic Description of the Bricks Sorter.

the sensor after a small fixed time delay. Process black brick2 models a brick that
is released with an additional non-deterministic delay between 25·500 and 250·000
time units. A process Hurry_Dummy is added as an auxiliary one-location process
that always offers synchronization on the urgent channel Hurry. This combines to
the Uppaal model Sorter. We want to establish a safety property stating that the
second brick is kicked off, regardless of the actual time delay value in black brick2:

Sorter |= A[] not black_brick2.PASSED.

6.4.2 Augmentation of the Bricks Sorter Model

Starting with the Uppaal model Sorter, we define a sequence of model augmenta-
tions. The processes Scheduler, RCX0_main, and RCX0_kick_off are augmented.
The augmentation points are chosen according to the nature of the particular pro-
cess.

Scheduler. Figure 6.3 (i) displays the Uppaal process Scheduler. It uses the
array RCX0_active and the integer variable RCX0 current task to keep track of
the next task to release. It does so by taking the transition to RCX0_inTask, if
possible, and otherwise idles via the self loop at RCX0_inSched.

The augmented model (ii) is shown on the right. If all tasks are inactive, the
location Parking can be reached. As soon as one of the tasks becomes active again.
Synchronization on the urgent channel Hurry and declaring the location Driving

urgent ensures that the augmented Scheduler does not remain parking unnecessarily
long.

Tasks. In the processes RCX0_main and RCX0_kick_off, the conditional tests cause
loops in the control structure. Model augmentations are applied in eight places. Six
of them are wait conditions for conditions to hold true, like the one shown in Fig-
ure 6.4. The remaining two are allowing optional time delay, whenever progress
depends on timing conditions to be met.

This amounts to nine model augmentations that add 16 locations and 34 transitions
in total. We refer to the obtained model as Aug∗

A
(Sorter).

116 Chapter 6. The Model Augmentation Technique

RCX0_inSched
RCX0_timer<=CS

RCX0_inTask

RCX0_startRCX0_timer <1
RCX0_active[0]:=1,
RCX0_currentTask:=0,
RCX0_timer:=0

RCX0_active[RCX0_currentTask]==0,
RCX0_timer==CS

RCX0_timer:=0,
RCX0_currentTask:=
 RCX0_currentTask+1

RCX0_active[RCX0_currentTask]==1,
RCX0_timer==CS

RCX0_Go!
RCX0_timer:=0

RCX0_Go?

RCX0_timer:=0,
RCX0_currentTask:=RCX0_currentTask+1

RCX0_inSched
RCX0_timer<=CS

Parking

RCX0_inTask

RCX0_start
RCX0_timer < 1

Driving

RCX0_active[0]:=1,
RCX0_currentTask:=0,
RCX0_timer:=0

RCX0_active[RCX0_currentTask]==0,
RCX0_timer==CS

RCX0_timer:=0,
RCX0_currentTask:=

RCX0_currentTask+1

RCX0_active[RCX0_currentTask]==1,
RCX0_timer==CS

RCX0_Go!RCX0_timer:=0

RCX0_Go?

RCX0_timer:=0,
RCX0_currentTask:=RCX0_currentTask+1

RCX0_active[0] == 0,
RCX0_active[1] == 0

RCX0_active[0] == 1Hurry?

RCX0_active[1] == 1Hurry?

RCX0_timer:=0

(i) Original Scheduler Process (ii) Augmented Scheduler Process

Figure 6.3: The Round-Robin scheduler (i) repeatedly toggles through the list
of tasks. If the respective task is active, execution of this task is released
(RCX0 inTask). The task executes an instruction and then hands back control to
the scheduler by synchronizing on channel RCX0 go. If the respective task is inac-
tive, it is skipped (self-loop to the right). Hereafter, the scheduler moves on to the
next task. The variable RCX0 current task wraps around to 0, when the number
of existing tasks is exceeded. When augmented (ii), the scheduler is additionally
allowed to move to a location Parking if all tasks are inactive. This location has
to be left immediately if one of the tasks become active again (synchronization on
urgent channel Hurry).

*** Task 0 = main

...

031 InType 2, Switch

034 InMode 2, Boolean

037 OutDir A, Fwd

039 OutMode A, On

041 OutPwr A, 1

045 OutDir B, Fwd

047 OutMode B, On

049 OutPwr B, 6

053 Display 1

057 StartTask 1

059 Test Input(0) <= var[4], 70

067 Jump 59

070 ...

RCX0_main_5_S2

RCX0_timer <= 21

RCX0_main_10_S2

RCX0_timer <= 21

RCX0_main_5_S1

Abstract_3

RCX0_main_10_S1

RCX0_main_5_S0

Abstract_2

RCX0_timer <= 143

RCX0_main_10_S0

Augment_2Augment_1

RCX0_timer <= 143

RCX0_main_28_S2

RCX0_timer <= 21

RCX0_main_28_S1

RCX0_main_28_S0

RCX0_main_77_S3

RCX0_timer <= 143

RCX0_main_77_S2

RCX0_timer <= 143

RCX0_main_77_S1 RCX0_main_77_S0

RCX0_main_62_S3

RCX0_timer <= 143

RCX0_main_62_S2

RCX0_timer <= 143

RCX0_main_62_S1
RCX0_main_62_S0

RCX0_main_15_S2

RCX0_timer <= 21

RCX0_main_15_S1

RCX0_main_15_S0

RCX0_main_51_S3
RCX0_timer <= 143

RCX0_main_51_S2

RCX0_timer <= 143

RCX0_main_51_S1
RCX0_main_51_S0

RCX0_main_122_S1
RCX0_timer <= 20

RCX0_main_122_S0

RCX0_main_41_S2

RCX0_timer <= 21

RCX0_main_41_S1

RCX0_main_41_S0

RCX0_main_59_S1
RCX0_timer <= 20

RCX0_main_59_S0

RCX0_main_112_S2

RCX0_timer <= 21

RCX0_main_112_S1

RCX0_main_92_S2

RCX0_timer <= 21

RCX0_main_112_S0

RCX0_main_92_S1

RCX0_main_92_S0

RCX0_main_114_S3

RCX0_timer <= 143

RCX0_main_114_S2
RCX0_timer <= 143

RCX0_main_114_S1

RCX0_timer <= 0
RCX0_main_114_S0

RCX0_main_31_S2

RCX0_timer <= 21

RCX0_main_31_S1

RCX0_main_31_S0
RCX0_main_49_S2

RCX0_timer <= 27

RCX0_main_97_S2

RCX0_timer <= 25

Smear

RCX0_main_timer <= 777

RCX0_main_49_S1

RCX0_main_97_S1

RCX0_main_49_S0

RCX0_main_97_S0

RCX0_main_102_S2

RCX0_timer <= 21

RCX0_main_34_S2

RCX0_timer <= 21

RCX0_main_102_S1

RCX0_main_34_S1

RCX0_main_102_S0

RCX0_main_34_S0

RCX0_main_37_S2

RCX0_timer <= 21

RCX0_main_20_S2

RCX0_timer <= 21

RCX0_main_37_S1

RCX0_main_85_S2

RCX0_timer <= 27

RCX0_main_20_S1

RCX0_main_37_S0

RCX0_main_85_S1

RCX0_main_20_S0

RCX0_main_85_S0

RCX0_main_107_S2

RCX0_timer <= 25

RCX0_main_39_S2

RCX0_timer <= 21

RCX0_main_107_S1

RCX0_main_39_S1

RCX0_main_87_S2

RCX0_timer <= 21

RCX0_main_0_S2

RCX0_timer <= 21

RCX0_main_107_S0

RCX0_main_70_S2

RCX0_timer <= 27

RCX0_main_39_S0

RCX0_main_87_S1RCX0_main_0_S1

RCX0_main_70_S1

RCX0_main_87_S0

RCX0_main_0_S0

RCX0_main_70_S0

RCX0_main_72_S2

RCX0_timer <= 21

RCX0_main_72_S1

RCX0_main_72_S0

RCX0_main_25_S2

RCX0_timer <= 21

RCX0_main_25_S1

RCX0_main_25_S0

Sync

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_b:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_a1:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_a2:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_InType_1:=0RCX0_timer==21
RCX0_Go!RCX0_currentTask==0

RCX0_Go?

RCX0_timer:=0

RCX0_InMode_1:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_InType_3:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_InMode_3:=0
RCX0_timer==21
RCX0_Go!RCX0_currentTask==0

RCX0_Go?

RCX0_timer:=0
RCX0_OutDir_A:=1

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_OutMode_A:=1

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_OutPwr_A:=1

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_active[1]:=1

RCX0_timer==27
RCX0_Go!

RCX0_currentTask==0

RCX0_Go?

RCX0_timer:=0

RCX0_IN_1<=42

RCX0_IN_1>42

RCX0_timer==143
RCX0_Go!

RCX0_timer==143

RCX0_Go!
RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_timer==20
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

0!=RCX0_b
0==RCX0_b

RCX0_timer==143
RCX0_Go!

RCX0_timer==143
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_timer_1:=0

RCX0_timer==27
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_a1:=1

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

1!=RCX0_b

1==RCX0_b

RCX0_timer==143

RCX0_Go!

RCX0_timer==143
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0
RCX0_timer_2:=0

RCX0_timer==27

RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_a2:=1

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0___temp_5:=0

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0___temp_5:=RCX0___temp_5-RCX0_b

RCX0_timer==25
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0RCX0_b:=RCX0___temp_5

RCX0_timer==21
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_b:=RCX0_b+1

RCX0_timer==25
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_speaker:=1

RCX0_timer==21

RCX0_Go!

RCX0_currentTask==0
RCX0_Go?
RCX0_timer:=0

RCX0_IN_1<=42

RCX0_IN_1>42

RCX0_timer==143
RCX0_Go!

RCX0_timer==143
RCX0_Go!

RCX0_currentTask==0
RCX0_Go?

RCX0_timer:=0

RCX0_timer==20
RCX0_Go!

RCX0_main_timer := 0

RCX0_IN_1 > 42

RCX0_active[0] := 0

RCX0_timer == 143
RCX0_Go!

RCX0_IN_1 <= 42
Hurry?

RCX0_active[0] := 1

RCX0_IN_1 <= 42

RCX0_active[0] := 0

RCX0_timer == 143

RCX0_Go!
RCX0_IN_1 > 42

Hurry?
RCX0_active[0] := 1

RCX0_active[0] := 1

RCX0_active[0] := 1

Figure 6.4: Part of a LEGO RCXTM task program (left). When at position 059,
the task continues no sooner with position 70 than the sensor input 0 equals or falls
below the value of var[4]. In the Uppaal process (right) this corresponds to the
counter-clockwise loop from RCX0 main S59 S0 to RCX0 main S59 S1. The process is
augmented with locations Augment 1 and Augment 2. This adds the possibility of a
clock-wise loop, where the process parks at Augment 2. Note that the augmentation
hat to “fit” into the model. In the augmentation, RCX0 go! is offered and the
variable RCX0 active[0] is set properly.

6.4. Bricks Sorter Example 117

#explored average number #dead-
states of successors locks time [sec] space [KB]

Sorter 151·103 1.28 0 86.84 1·840

Aug∗
A
(Sorter) 22·966 2.09 20 21.15 2·512

Table 6.2: Run-Time comparison of the bricks sorter model and its augmented ver-
sion. Both measurements used verifyta from Uppaal 3.1.58 with switch settings
-sWabA -S 2 (active clock reduction, breadth-first search, convex hull approxima-
tion enabled—see Chapter 5—, running on a 300 MHz UltraSPARC-II processor).
The number of explored states and average number of successors was determined
in an extra run, using a version of verifyta that was modified to output these
diagnostics.

The run-time comparison of Sorter and Aug∗
A
(Sorter) is given in Table 6.2. On

Aug∗
A
(Sorter), forward state space exploration runs four times faster, but consumes

slightly more memory. The larger memory consumption indicates that in the aug-
mented version a larger number of incomparable symbolic states are encountered.

This is a consequence both of the additional control structure and the application
of the convex hull over-approximation (see Section 5.2.1). With each repetition of
the control loop in Sorter, the entry in Passed is updated to a larger convex hull
over the encountered sets clock regions. The total size of Passed does not increase
by then.

Aug∗
A
(Sorter) exhibits a considerably higher average number of successors, which

can be understood as additional non-determinism. Aug∗
A
(Sorter) yields additional

deadlock states, apparently due to unfortunate timing clashes. In general this is
undesirable, for it remains unclear whether the original model is deadlock-free. In
this class of examples, however, the original model is by construction deadlock-free
and thus the deadlocks are necessarily spurious.

Note that Aug∗
A
(Sorter) is also good for proving other safety properties. If they

hold in Aug∗
A
(Sorter), the whole state-space is expanded symbolically in one run;

thus the run-time data would be identical modulo small differences caused by the
evaluation of the invariant ψ for each symbolic configuration.

In the model checking run we made use of the convex-hull approximation tech-
nique. Here, the clock evaluations—represented by zones—of symbolic configura-
tions with coinciding discrete part are replaced by a single configuration, where the
clock evaluation is computed as the smallest convex zone encapsulating the original
two zones. This increases the number of reachable states, but is conservative with
safety properties in one direction. Without this option, the large number of created
symbolic states in this example exceeded the available 1GB of memory, both for
Sorter and for Aug∗

A
(Sorter).

118 Chapter 6. The Model Augmentation Technique

6.5 Reflection: Model Augmentation

Model augmentation is a very specialized approximation technique. We restrain
from pruning processes, i.e., existing behavior of the system is never prohibited.
This allows for a general soundness proof and enables combination with other over-
approximations like convex hull.

We applied our technique on Uppaal models of LEGO RCXTM programs.
Though the savings are not drastic, the run-time improvements in a brick-sorter
example demonstrate the benefits of our technique. The time savings were roughly
75%, but slightly more memory was consumed with the augmented model. More
experiments are needed to determine, whether this is specific only to this example.

The augmentation points of the tasks—and thus the associated augmentation—
can be either derived from the control structure of the Uppaal model, or even
directly from the LEGO RCXTM program. There exists a translation from RCX
programs to corresponding Uppaal models [IKL+00]. It is possible to modify this
translation to directly compute an augmented version of the Uppaal models, pro-
viding full automation for this optimization technique in this class of application.

Model Augmentation suffers from two major drawbacks. First, it can only be ap-
plied if repetition of control situations exists and can be detected effectively. Both
hold only for rather special models. Second, the introduction of new traces ulti-
mately sentences the technique to be at best conservative with respect to safety and
universal path properties. The subsequent Chapter 7 introduces an approximation
technique that allows approximation for a larger set of properties.

Chapter 7

Abstract Interpretation of Dense
Real-Time

I don’t have any solution, but I certainly admire the problem.

— Ashleigh Brilliant

Every system denotes some sort of computation in an universe. Abstract inter-
pretation of a system uses this denotation to perform computations in another
universe in such a way that the result allows us to draw conclusions on the
behavior in the concrete universe.1

The formal framework of abstract interpretation originated in the work of
Cousot and Cousot [CC77]. It relies on a non-standard (abstract) interpretation
of a given system description that unfolds to a much smaller structure than
the standard interpretation. This can effectively be applied in an a posteriori
analysis of a system. It does not hurt that the analysis is essentially incomplete
and may fail to either establish or refute one specific property ϕ. The attitude
here is to detect as many properties as possible in an economic way.

In verification, it is typically required to establish (or refute) one particular
property ϕ. Since one abstract interpretation may fail to do either, one can
try to refine the abstraction, until either ϕ or ¬ϕ holds. In the worst case this
refinement may lead back to the concrete (non-abstracted) system. One sys-
tematic way to perform this refinement is predicate abstraction (sometimes also
called Boolean abstraction). Here the abstraction is formed compositionally by
means of Boolean predicates. Adding one predicate corresponds to refining the
abstraction.

119

120 Chapter 7. Abstract Interpretation of Dense Real-Time

The abstract interpretation framework has been used before to formalize
approximations of safety in real-time systems [WT94,DT98]. Ours is—to the
best of our knowledge—the first work that also allows for liveness in this con-
text. Liveness in dense real-time is complicated by the possible sequences of
infinitesimally decreasing delay steps; they constitute a degenerated behavior of
a system which has to be weeded out. We get rid of this by a non-convergence
assumption that is weaker than non-zenoness. The operative point is that this
assumption can be incorporated syntactically by restricting delay steps.

7.1 Outline of this Chapter

This section give a brief description of the problems connected with applying abstract
interpretation on real-time systems, sketches our proposed solution and lists the
contents of this Chapter in detail.

In the following we adopt the framework of predicate abstraction to real-time
systems. Instead of carrying out the analysis on the concrete system, we attempt to
establish them in an abstracted version. This abstract version has to be constructed
in such a way that certain properties of the abstract version also hold in the concrete
one.

Since both safety and liveness properties shall be verified, this approach dic-
tates the construction of two abstract transition relations, sometimes called MUST
(under-approximation) and MAY (over-approximation). Existential operators have
to be established via MUST, while for universal operators MAY is appropriate (see,
e.g., [GHJ01]).

In dense real-time this entails a technical complication. Since the state space is
infinite, only equivalence classes of states can be treated. This a priori approxima-
tion hinders the establishing of liveness properties—considering all possible clock
evaluations, the MUST part is in general never satisfied. The root of this problem
is the quantitative treatment of time: If one can distinguish a delay of 1/2 and 1/4
of a time unit, then the configurations of a system before and after taking any small
delay are not bisimilar—and the analysis cannot restrict to a finite quotient of the
system.

We solve this problem by removing the quantitative reasoning over time delay
steps in the logic. This yields a next-free version of the (un-timed) µ-calculus,
which we call next-free µ-calculus. This restricts to properties where certain future
situations are reached either potentially or inevitably. The number of steps or the
duration between steps cannot explicitly be observed. Under a non-convergence
assumption on the timed behavior of the system, we can syntactically restrict the
delay-steps to cross some boundaries. With respect to next-free µ-calculus, the
standard semantics and the restricted semantics are equivalent.

1A slight adaptation of the frequently quoted description in [CC77].

7.2. Abstract Interpretation 121

We show how to apply predicate abstraction to real-time systems, where the
properties are taken from next-free µ-calculus. Here the control structure is pre-
served; the abstraction merely addresses the regions of clock evaluations, which are
the expensive part in real-time verification. Note that the abstracted systems no
longer refer to the real-time nature of a trace. Any standard model checking tool can
be used to establish safety and liveness properties in the abstracted system. Those
expressible in next-free µ-calculus then also hold for the concrete system. Thus the
reasoning about real-time equivalence classes is moved to the abstraction function
that is in turn build via predicates over clock constraints.

We propose a novel algorithm for the stepwise refinement of finite state abstrac-
tions for a timed automaton. This sequence of abstractions converges toward the
region graph of the real-time system, thus the method is complete with respect to
our property language. This technique has the potential to be significantly cheaper
than the region graph construction. Other than safe over-approximation, it can also
be used to establish liveness properties.

Organization. The rest of this Chapter is structured as follows. Section 7.2 gives a
brief introduction to the machinery of abstract interpretation. Section 7.3 introduces
predicate abstraction as a special technique to construct the abstraction function.
This set the stage for application on dense real-time systems. In Section 7.4 we
review the basic notions of timed automata including a natural semantics based
on a non-convergence assumption of time. The language to express properties of
this model is a next-free version of the propositional µ-calculus, called next-free
µ-calculus. We then define the notion of restricted delay steps and show that this
restricted semantics of a timed automata is observationally equivalent to the natural
semantics. In Section 7.5 the restricted semantics is used to define finite over- and
under-approximations of timed systems. In Section 7.6 we introduce the concept of
a basis as a set of abstraction predicates expressive enough to distinguish between
any two different clock regions. We show that for predicate abstraction with a basis
as abstraction predicates the approximation is exact with respect to the next-free
µ-calculus. Then, in Section 7.7, we define a terminating algorithm for iteratively
refining abstractions until the given property is either proved or refuted. Section 7.8
concludes and lists related work.

7.2 Abstract Interpretation

We briefly introduce the basics of abstract interpretation, as connecting two Kripke
structures via a Galois connection. The properties that might be preserved are
expressed in the propositional µ-calculus. As a incremental way to construct the
Galois connection, we use predicate abstraction.

122 Chapter 7. Abstract Interpretation of Dense Real-Time

(QA,vA)

α γ

P

(Q,v)

γ(PA)

P
A

α(P)
(QA,vA) abstract

system
(Q,v) concrete

system

α : Q → QA abstraction
γ : QA → Q concretization

Figure 7.1: Galois connection: ∀P ∈ Q, PA ∈ QA. α(P) vA PA ⇔ P v γ(PA)

7.2.1 Galois Connections

Definition 7.1 (Galois Connection) Let (Q,v) and (QA,vA) be lattice struc-
tures. We call a pair (α, γ) of functions α : Q → QA and γ : QA → Q a Galois
connection, if and only if

∀P ∈ Q, PA ∈ QA. α(P) vA PA ⇔ P v γ(PA)

We call α the abstraction and γ the concretization, see Figure 7.1.

Galois connections have many interesting properties that are of no further conse-
quence in this context. We refer to [CC77,Dam96,Kel95] for a compendium.

As for which lattice structures to use in the Galois connection, there is a wide
variety of choices. Throughout this Chapter, we treat model checking state-based,
i.e., a formula in our temporal logic is given a semantics in terms of the set of states
in the system that satisfy this formula. Consequently, the lattices of our Galois
connection will be sets of states, with set-inclusion as partial order.

In contrast to the more general trace-based approach, state-based model check-
ing may loose properties that are dependent on past operators (as demonstrated
in [CC00]). Since we restrict to a forward-analysis, this is of no further consequence.

7.2.2 Property Preservation over Kripke Structures

We define Kripke structures as models for systems that we aim to analyze. The
states (sometimes called worlds or nodes) are labeled with elements from a set of
atomic properties A.

Definition 7.2 (Kripke Structure)
A Kripke structure is a tuple 〈Σ, P,R, I〉, where
• Σ is a set of states,
• P : Σ→ 2A is a labeling function,
• R ⊆ Σ× Σ is the transition relation, and
• I ⊆ Σ is the set of initial states.

7.2. Abstract Interpretation 123

The properties of a state are expressed in the logic of the µ-calculus [Koz83]. We
define an adoption for the case, where only the states are labeled and not the tran-
sitions.

Definition 7.3 (Propositional µ-Calculus)
Given a set A of atomic predicates and a set of formal variables Var, p ∈ A, Z ∈ Var.
Formulas ϕ of the propositional µ-calculus are constructed according to the following
grammar.

ϕ ::= p
∣∣ ¬ϕ

∣∣ ϕ ∧ ϕ
∣∣ © ϕ

∣∣ µZ.ϕ(Z)
∣∣ Z

Here, © is the existential next operator and µZ denotes the least fix-point. As a
well-formedness requirement, the formal variables Z can appear in ϕ(Z) only under
an even number of negations.

We formalize the relationship between Kripke structures and formulas by associating
every (well-formed) formula with a set of states, where it is valid.

Definition 7.4 (Semantics of Propositional µ-Calculus)
Given a set of atomic predicates A, a Kripke structure 〈Σ, P,R, I〉, and an assign-
ment ϑ : Var → 2Σ. The set of states validating a formula ϕ of the propositional
µ-calculus with respect to ϑ is defined inductively on the structure of ϕ (where p ∈ A
and Z ∈ Var).

[[p]]ϑ := {s ∈ Σ
∣∣ p ∈ P (s)}

[[¬ϕ]]ϑ := Σ \ [[ϕ]]ϑ
[[ϕ1 ∧ ϕ2]]ϑ := [[ϕ1]]ϑ ∩ [[ϕ2]]ϑ

[[©ϕ]]ϑ :=
{
s ∈ Σ

∣∣ ∃s′ ∈ Σ. sR s′ ∧ s′ ∈ [[ϕ]]ϑ
}

[[µZ.ϕ]]ϑ :=
⋂{

E ⊆ Σ
∣∣ [[ϕ]]ϑ[Z:=E] ⊆ E

}

7.2.3 Strong and Weak Preservation

If we describe our concrete system by a Kripke structure 〈Σ, P,R, I〉, we can relate
it to an abstract system described by a Kripke structure 〈ΣA, PA, RA, IA〉. We
do this by finding a Galois connection (α, γ) between Σ and ΣA that fulfills some
additional requirements. Before we go into details with this, let us consider what
preservations we are interested in. We can distinguish strong and weak preservation.

Strong preservation requirement: A property holds in some state of the abstract
structure, if and only if it holds in the corresponding state(s) of the concrete struc-
ture, i.e., γ([[ϕ]]A) = [[ϕ]].

As it turns out, this dictates 〈ΣA, PA, RA, IA〉 to be bisimilar to the concrete system,
and thus at least its bisimulation quotient. The additional requirements are exactly
such that R and RA are in a bisimulation relation [Dam96].

124 Chapter 7. Abstract Interpretation of Dense Real-Time

Computing a bisimulation quotient gives a lot of information about the system
and is in general an expensive operation. Thus it is often desired to construct
abstractions that are smaller and less expressive. We are satisfied, if all properties
we can establish in the abstracted version carry over to the concrete system.

The alternation between existential and universal quantifiers causes complica-
tions. If the formula ϕ only contains universal quantification, (i.e., if it is expressible
in ∀CTL?), it suffices to compute an abstraction that is a simulation of the concrete
system. If both existential and universal quantifiers are present, the concrete system
can be approximated using two abstracted transition relations: one over- and one
under-approximation [Dam96, GHJ01]. Consequently, the interpretation of every
formula has an over- and an under-approximation ([[·]]A+ respectively [[·]]A−).

Weak preservation requirement: If a property holds in some state of the abstract
system, it also holds in the corresponding state(s) of the concrete system, i.e.,
γ([[ϕ]]A−) ⊆ [[ϕ]].

7.3 Predicate Abstraction

Predicate abstraction [GS97, BLO98, SS99] is a technique to build the Galois con-
nection (α, γ) from a set of Boolean predicates over the concrete system. It can
be used, e.g., to compute a finite approximation of a given infinite state transition
system.

We use the power-set of concrete system states with ordinary set inclusion as the
lower lattice in the Galois connection. Now the idea is to build equivalence classes
on sets of states via Boolean predicates that evaluate over the concrete state space.

Assume n predicates. As for the abstracted system, this gives rise to three dif-
ferent natural lattice structures, each of which is a refinement of the one before.

(1) The set of monomials2 of size n over the predicates, together with constants
⊥ and > (2n + 2 elements),

(2) The monomials over the predicates, together with constants ⊥ (3n + 1 ele-
ments), or

(3) The complete Boolean algebra over n Boolean variables (22
n
elements).

In real-time systems, the bottle-neck in model checking is the multitude of dis-
tinguishable clock regions that can be associated with the same control location.
Consequently we use an extension of (1), where the control structure of the concrete
system is preserved, similar to the approach taken in [BLO98]. Our predicates solely
range over clock constraints; this entails that our technique is incremental in the
sense that adding one more predicate to an abstraction yields always a refinement.

2Monomials are expressions
∧
i∈I⊆{1,...,n} li, where each li is a literal, i.e., either Bi or ¬Bi for

a Boolean predicate Bi.

7.4. Timed Systems with Restricted Delay Steps 125

Since we are concerned with both safety and liveness properties, both over- and
under-approximation of the transition relation is required. This has been exemplified
in [SS99], where two lattices over Boolean predicates are constructed.

The main problem with applying predicate abstraction in general is to come up
with an appropriate set of predicates. For timed systems a set of abstraction predi-
cates expressive enough to distinguish between any two clock regions determines a
strongly preserving abstraction. More precisely, a timed system satisfies the prop-
erty under consideration if and only if the predicate-abstracted system satisfies this
property.

The set of abstraction predicates required to compute a strongly preserving ab-
straction, a so-called basis, can still be excessively large. Starting with a trivial
over-approximation, we successively select predicates from the finite basis. Coun-
terexamples from failed model checking attempts are used in guiding the selection.
The idea of counterexample-guided refinement has been used before by many re-
searchers, and recent work includes [CGJ+00,DD01,LBBO01]). In contrast to these
approaches, we use the counterexample only as a heuristic for selecting good pivot
predicates from a fixed, predetermined pool of abstraction predicates in order to
speed-up convergence of the approximation processes.

7.4 Timed Systems with Restricted Delay Steps

We review some basic notions of transition systems and timed systems. Furthermore,
we introduce the notion of time-progressing systems by syntactically restricting the
delay steps. These restrictions, however, are not observable in a version of the
propositional µ-calculus without a next-step operator. This sets the stage for proving
completeness of our abstraction techniques in Section 7.7.

The model of timed system as defined below is motivated by the timed automata
model as introduced by Alur, Courcoubetis, and Dill [ACD93].3 Clocks for measur-
ing time are encoded as variables, which are interpreted over the nonnegative reals
IR≥0. Transitions of timed systems are usually constrained by timing constraints.

Definition 7.5 (Timing Constraints) Given a set of clocks C, the set of timing
(or clock) constraints Constr contains true, x ./ m, and x−y ./ m, where x, y ∈ C,
m ∈ IN , ./∈ {≤, <,=, >,≥}. The set Inv is the subset of Constr, where ./ is
chosen from {≤, <}. For a positive integer c, Constr(c) is the finite subset of all
timing constraints x ./ m, x − y ./ m, where x, y ∈ C, ./ ∈ {<,≤,=,≥, >} and
m ∈ {0, . . . , c}.

3For simplicity, we do not treat (synchronized) networks of timed automata, as introduced
earlier in Chapter 2. The techniques used in the following can be extended for such networks. The
ommission of communication and the representation of variables as control locations simplifies the
description.

126 Chapter 7. Abstract Interpretation of Dense Real-Time

l0
y ≤ 1

l1 l2

x := 0

x := 0 y > xy := 0

x > y

Figure 7.2: Example of a Timed System.

Definition 7.6 (Timed System) Given a finite set of propositional symbols A,
a timed system S is a tuple 〈L,P,C, T, l0, I〉, where

• L is a nonempty finite set of locations,
• P : L→ 2A maps each location to a set of propositional symbols,
• C is a finite set of clocks,
• T ⊆ L× 2Constr × 2C × L is a transition relation,
• l0 ⊆ L is the initial location, and
• I : L→ 2Inv assigns a set of downward closed clock constraints to each location
l; the elements of I(l) are the invariants for location l.

We write l
g,r
−→ l′ for 〈l, g, r, l′〉 ∈ T . Firing a transition does not only change the

current location but also resets the clocks in r to 0. A transition may only be fired
if the timing constraint (guard of the transition) g holds with respect to the current
value of the clocks, and if the invariant of the target location is satisfied with respect
to the modified value of the clocks.

Example 7.7 A timed system with three locations l0, l1, l2 and two clocks x, y
is displayed in Figure 7.2. The initial location is l0, transitions are decorated with
both timing constraints and clock resets such as x := 0. The invariant for location
l0 is y ≤ 1. Timing constraints that are true are omitted.

A function ν : C → IR≥0 is a clock evaluation, and the set of clock evaluations is
collected in VC . The clock evaluation (ν + d) is obtained by adding d to the value
of each clock in ν. For X ⊆ C, ν[X := 0] denotes the clock evaluation that updates
every clock x ∈ X to zero, and leaves all the other clock values unchanged. The
value gν of a clock constraint g with respect to the clock evaluation ν is obtained by
substituting the clocks x in g with the corresponding value ν(x). If gν simplifies to
the true value, ν satisfies g and we write ν |≈ g. A set X ⊆ VC of clock evaluations
satisfies g ∈ Constr, written as X |≈ g, if and only if ν |≈ g for all ν ∈ X . A pair
(l, ν) ∈ L × VC is called a timed configuration, if it satisfies the invariants I(l);
formally, ν |≈ I(l) if ν |≈ g for every invariant g ∈ I(l). Alur, Courcoubetis, and
Dill [ACD93] introduce the fundamental notion of clock regions, which partition the
space of possible clock evaluation for a timed automaton into finitely many regions.

7.4. Timed Systems with Restricted Delay Steps 127

Definition 7.8 (Clock Region) Let S be a timed system with clocks C and
largest constant c, occurring in any timing constraint of S. A clock region is a
set X ⊆ VC of clock evaluations, such that for all timing constraints g ∈ Constr(c)
and for any two ν1, ν2 ∈ X it is the case that ν1 |≈ g if and only if ν2 |≈ g. In this
case we write ν1≡S ν2.

A timed step is either a delay step, where time advances by some positive real-valued
d, or an instantaneous state transition step.

Definition 7.9 (Timed Step) Let S be a timed system with clock set C and
transition relation T . For d > 0, we say that the timed configuration (l, ν + d) is

obtained from (l, ν) by a delay step (l, ν)
d
−→ (l, ν + d), if the invariant constraint

ν + d |≈ I(l) holds. A state transition step (l, ν)
g,r
−→ (l′, ν ′) occurs if there exists a

l
g,r
−→ l′ ∈ T , and ν |≈ g, ν ′ = ν[r := 0], and ν ′ |≈ I(l′). The union of delay and

state transition steps defines the timed transition relation ⇒ of a timed system S.
Now, a path is an infinite or maximally extended finite sequence of configurations
s0 ⇒ s1 ⇒

Timed systems, as defined above, allow for infinite sequences of delay steps without
ever exceeding some given bound. The sequence

(l, x = 0)
1/2
=⇒ (l, x = 1/2)

1/4
=⇒ (l, x = 3/4)

1/8
=⇒ (l, x = 7/8) · · · (∗)

for example, never reaches point in time where x = 1. Systems with paths such that
an infinite number of steps may happen in a bounded time frame are said to be zeno.
This kind of behavior is usually ruled out by restricting possible behaviors to non-
zeno only. In order to preserve faulty behavior that is caused by an infinite sequence
of state transition steps, we use a slightly weaker assumption than non-zenoness.
We consider paths which satisfy the following assumption.

Assumption 7.10 (Non-Convergence of Time)
In every infinite sequence of delay steps, the evaluation of every clock eventually
exceeds every bound.

In the sequel we build time-abstractions which do not distinguish between state
transition steps and delay steps. The main difficulty in defining such abstractions
is to prevent delay steps to be abstracted into self-loops on the abstract system.

l0
x ≤ 1

l1
x = 1

Figure 7.3: Timed System for Example 7.11.

128 Chapter 7. Abstract Interpretation of Dense Real-Time

Example 7.11 Consider the timed system in Figure 7.3. Under the non-convergence
assumption this system satisfies the property that location l1 is always reached. For
example, the following sequence is the prefix of a possible path of this system.

(l0, x = 0)
1/2
=⇒ (l0, x = 1/2)

1/4
=⇒ (l0, x = 3/4)

1/4
=⇒ (l0, x = 1)

x=1,∅
=⇒ (l1, x = 1)

We abstract the timed system from Figure 7.3 using the three abstraction predicates
ψ0 ≡ x = 0, ψ1 ≡ x < 1, and ψ2 ≡ x = 1. On the abstract system the single
state transition step of the timed system is split according to whether or not these
predicates hold. For example, in the initial abstract configuration only ψ0 and ψ1

hold, since the value of the clock in the initial concrete state is zero. Corresponding
to delay steps with delay less than one, there is an abstract transition to a state
where only ψ1 holds. Using small enough delay steps one remains in this state or
one reaches a state in which only ψ2 holds, that is, the clock value is exactly one. A
fragment of the resulting abstract transition system is given below.

l0, ψ0ψ1¬ψ2 l0,¬ψ0ψ1¬ψ2 l0,¬ψ0¬ψ1ψ2 l1,¬ψ0¬ψ1ψ2

Notice the self-loop at configuration (l0,¬ψ0ψ1¬ψ2), which has not been present in
the concrete system. Due to the loop, it no longer holds for the abstracted system
that on every possible path a configuration with location l1 is reached eventually.

In order to avoid such extraneous self-loops, the non-convergence assumption must
somehow be incorporated into the abstract system. Such a restriction, however, can
not be defined by means of time delays in the abstract system for the simple reason
that there is no notion of time or time delay on this level. In our approach, we
enforce the non-convergence assumption explicitly by restricting the model of timed
system to delay steps that force a clock to step beyond integer bounds when all
fractional clock values are not zero. In this way, the second and third delay step of
the path (∗) above, for example, are explicitly ruled out.

Definition 7.12 (Restricted Delay Step) For a timed system S with clock set

C and largest constant c, a restricted delay step is a delay step (l, ν)
d
−→ (l, ν + d)

for all positive, real-valued d, such that

∃x ∈ C. ∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + d ≥ k) (7.1)

The union of state transition steps and restricted delay steps gives rise to a rela-
tion ⇒R ⊆ (L,VC) × (L,VC). Now, a restricted path is an infinite sequence of
configurations s0 ⇒R s1 ⇒R

Obviously, it is the case that ⇒R is a sub-relation of ⇒. The restriction of delay
steps above does not necessarily enforce time to progress, as is demonstrated by the
following restricted path for the system in Example 7.7.

(l0, x = y = 0)
true,∅
=⇒ (l1, x = y = 0)

true,∅
=⇒ (l0, x = y = 0)

true,∅
=⇒ (l1, x = y = 0) · · ·

7.4. Timed Systems with Restricted Delay Steps 129

Note that a loop of state transition steps is required in order to prevent the clocks
x and y from exceeding the clock value 0.

Corresponding to the non-convergence assumption on timed paths and the re-
stricted delay steps we associate two semantics for timed systems in terms of tran-
sition systems. The natural semantics M includes arbitrary delay steps under the
non-convergence of time assumption, while the restricted semantics MR includes
only restricted delay steps as in Definition 7.12.

Definition 7.13 (Semantics of a Timed System) Let S = 〈L,P,C, T, l0, I〉
be a timed system. We associate two transition systems M and MR with S as
follows.

M := 〈L× VC , P, (⇒), (l0, ν0) 〉

MR := 〈L× VC , P, (⇒R), (l0, ν0) 〉

The symbol ν0 denotes the special clock evaluation, that maps every clock to 0. M is
called the natural semantics of S, and MR is referred to as the restricted semantics
of S.

We demonstrate that the restriction of delay steps does not change the possible
observations of the model with respect to µ-calculus formulas without next-step
operators.

7.4.1 The Next-Free µ-Calculus

The µ-calculus [Koz83] is a branching-time temporal logic. where formulas are
built from atomic propositions, boolean connectives, the least-fixpoint operator,
and the next-step operator ©. ©ϕ expresses that there is a successor satisfying
ϕ. We remove the next-step operator, since we do not want to distinguish between
one delay step of duration, say, 1 and two subsequent delay steps of durations 2/5
and 3/5. Both alternatives should be considered to be observationally equivalent.
Logics without explicit next-step operator have also been considered, for example,
by Dams [Dam96] and Tripakis and Yovine [TY01].

Definition 7.14 (Next-Free µ-Calculus) Let A be a set of atomic predicates,
and Var be a set of variables; then, for p ∈ A and Z ∈ Var, the set Lµ of next-free
µ-calculus formulas is described by the following grammar.

ϕ ::= tt
∣∣ p

∣∣ ϕ ∧ ϕ
∣∣ ¬ϕ

∣∣ ϕ ∀Uϕ
∣∣ ϕ ∃Uϕ

∣∣ Z
∣∣ µZ.ϕ(Z)

In addition, every variable is assumed to appear under an even number of negations.
A sentence is a formula without free variables.

Intuitively, an existential until formula ϕ1 ∃Uϕ2 holds in some configuration s iff
ϕ1 holds until ϕ2 holds on some path starting from s. Similarly, a universal until

130 Chapter 7. Abstract Interpretation of Dense Real-Time

formula ϕ1 ∀Uϕ2 holds in s if this conditions holds for all paths from s. We use the
abbreviations:

ff := ¬tt false
νZ.ϕ(Z) := ¬µZ.¬ϕ(¬Z) greatest fixpoint
♦∗ ϕ := tt ∃Uϕ on some path, ϕ holds eventually
¤∗ ϕ := tt ∀Uϕ for all paths, ϕ holds eventually

Given a transition systemM = 〈S, P,⇒R, s0〉, the semantics of a next-free µ-calculus
sentence is given by the set of timed configurations s = (l, ν) for which the formula
holds. Sub-formulas containing free variables Z ∈ Var are dealt with by a valuation
function ϑ : Var → 2S . The updating notation ϑ[Z := S ′] denotes the valuation ϑ′

that agrees with ϑ on all variables except Z, where ϑ′(Z) = S′ ⊆ S.

Definition 7.15 (Semantics of the Next-Free µ-Calculus) Given a transi-
tion systemM = 〈S, P,⇒R, s0〉 over the set S = L×VC of timed configurations and
an assignment ϑ : Var → 2S, the set of configurations [[ϕ]]Mϑ validating a formula
ϕ ∈ Lµ with respect to ϑ is defined inductively on the structure of ϕ.

[[tt]]Mϑ := S

[[p]]Mϑ :=
{
(l, ν) ∈ S

∣∣ p ∈ P (l)
}

[[ϕ1 ∧ ϕ2]]
M
ϑ := [[ϕ1]]

M
ϑ ∩ [[ϕ2]]

M
ϑ

[[¬ϕ]]Mϑ := S \ [[ϕ]]Mϑ

[[ϕ1 ∃Uϕ2]]
M
ϑ := {s0 ∈ S

∣∣ there exists a path σ = (s0 ⇒ s1 ⇒ . . .), s.t.

si ∈ [[ϕ2]]
M
ϑ for some i ≥ 0,

and for all 0 ≤ j < i, sj ∈ [[ϕ1]]
M
ϑ }

[[ϕ1 ∀Uϕ2]]
M
ϑ := {s0 ∈ S

∣∣ for every path σ = (s0 ⇒ s1 ⇒ . . .),

there exists i ≥ 0, s.t. si ∈ [[ϕ2]]
M
ϑ ,

and for all 0 ≤ j < i, sj ∈ [[ϕ1]]
M
ϑ }

[[Z]]Mϑ := ϑ(Z)

[[µZ.ϕ]]Mϑ :=
⋂{

E ⊆ S
∣∣ [[ϕ]]Mϑ[Z:=E] ⊆ E

}

We writeM, s, ϑ |= ϕ to denote that s ∈ [[ϕ]]Mϑ . The subscript ϑ is omitted whenever
ϕ is a sentence.

Two configurations are said to be indistinguishable if they satisfy the same set of
Lµ sentences.

Definition 7.16 (µ-Equivalence) For a transition system M, two configura-
tions s, s′ are µ-equivalent, denoted by s ≡M s′, if for every sentence ϕ ∈ Lµ:

s ∈ [[ϕ]]M if and only if s′ ∈ [[ϕ]]M.

7.4. Timed Systems with Restricted Delay Steps 131

The binary relation ≡M is indeed an equivalence relation on clock evaluations.
Moreover, µ-equivalence characterizes clock regions in the sense that two clock valu-
ations are in the same clock region if and only if they are µ-equivalent. Consequently,
µ-equivalence is of finite index.

Lemma 7.17 (Region Equivalence)
Let S be a timed system with clock set C and largest constant c, and let M be the
corresponding natural transition system. Then for all l ∈ L and clock evaluations
ν, ν ′ ∈ VC with ν≡S ν

′ the time configurations (l, ν) and (l, ν ′) are µ-equivalent, that
is, (l, ν) ≡M (l, ν ′).

Proof: Following Definition 7.16 two time configurations (l, ν) and (l, ν ′) are
µ-equivalent if and only if

∀ϕ ∈ Lµ. (l, ν) ∈ [[ϕ]]M ⇔ (l, ν ′) ∈ [[ϕ]]M

For arbitrary sentences ϕ ∈ Lµ we show (l, ν) ∈ [[ϕ]]M if and only if (l, ν ′) ∈ [[ϕ]]M.
The proof works by a straightforward structural induction on ϕ.

ϕ = tt From Definition 7.15 we have [[tt]]M = S. Therefore (l, ν) ∈ [[tt]]M and

(l, ν ′) ∈ [[tt]]M.

ϕ = p Also following Definition 7.15 we obtain [[p]]M = {l̃, ν̃ | p ∈ P(l)}. And

since the configurations (l, ν) and (l, ν ′) have the same locations, both are contained
in [[p]]M.

ϕ = ϕ1 & ϕ2 By Definition 7.15 we have that [[ϕ1 & ϕ2]]
M = [[ϕ1]]

M∩ [[ϕ2]]
M,

and by Induction Hypothesis it follows

(l, ν) ∈ [[ϕ1]]
M ⇔ (l, ν ′) ∈ [[ϕ1]]

M and

(l, ν) ∈ [[ϕ2]]
M ⇔ (l, ν ′) ∈ [[ϕ2]]

M

Thus, (l, ν) ∈ [[ϕ1]]
M ∩ [[ϕ2]]

M ⇔ (l, ν ′) ∈ [[ϕ1]]
M ∩ [[ϕ2]]

M.

ϕ = ¬ϕ1 By Definition 7.15 we have that [[¬ϕ1]]
M = S \ [[ϕ1]]

M. By In-

duction Hypothesis we obtain (l, ν) 6∈ [[ϕ1]]
M ⇔ (l, ν ′) 6∈ [[ϕ1]]

M, and therefore

(l, ν) ∈ [[¬ϕ1]]
M ⇔ (l, ν ′) ∈ [[¬ϕ1]]

M.

ϕ = ϕ1 ∃Uϕ2 By Definition 7.15

[[ϕ1 ∃Uϕ2]]
M =

{(l0, ν0) ∈ S | there exists a path σ = ((l0, ν0)⇒ (l1, ν1)⇒ . . .), s.t.
(li, νi) ∈ [[ϕ2]]

M for some i ≥ 0, and for all 0 ≤ j < i, (lj , νj) ∈ [[ϕ1]]
M}

By Induction Hypothesis we have that (l, ν ′i) ∈ [[ϕ2]]
M and (l, ν ′j) ∈ [[ϕ1]]

M, for all

132 Chapter 7. Abstract Interpretation of Dense Real-Time

0 ≤ j < i.

From the assumption ν≡S ν
′ it follows by Definitions 7.8 and 7.9 that there exists

a path τ ′ = ((l0, ν
′
0)⇒ (l1, ν

′
1)⇒ . . .) such that (li, ν

′
i) ∈ [[ϕ2]]

M for some i ≥ 0, and

(lj , ν
′
j) ∈ [[ϕ2]]

M for all 0 ≤ j < i. Thus, (l, ν ′) ∈ [[ϕ1 ∃Uϕ2]]
M.

ϕ = ϕ1 ∀Uϕ2 By Definition 7.15

[[ϕ1 ∀Uϕ2]]
M =

{(l, ν) ∈ S | for every path σ = ((l0, ν0)⇒ (l1, ν1)⇒ . . .) with (l0, ν0) = (l, ν),
there exists i ≥ 0 s.t. (li, νi) ∈ [[ϕ2]]

M , and for all 0 ≤ j < i, (lj , νj) ∈ [[ϕ1]]
M}

By Induction Hypothesis we have that (l, ν ′i) ∈ [[ϕ2]]
M and (l, ν ′j) ∈ [[ϕ1]]

M, for all
0 ≤ j < i.

From the assumption ν≡S ν
′ it follows by Definitions 7.8 and 7.9 that for all paths

τ ′ = ((l0, ν
′
0) ⇒ (l1, ν

′
1) ⇒ . . .) there exists i ≥ 0 such that (li, ν

′
i) ∈ [[ϕ2]]

M, and

(lj , ν
′
j) ∈ [[ϕ2]]

M for all 0 ≤ j < i. Thus, (l, ν ′) ∈ [[ϕ1 ∀Uϕ2]]
M.

ϕ = µZ.ϕ1 Assume (l, ν) ∈ [[µZ.ϕ1]]
M
ϑ , that is, by Definition 7.15

(l, ν) ∈
⋂{

E ⊆ S
∣∣ [[ϕ1]]

M
ϑ[Z:=E] ⊆ E

}

By Induction Hypothesis it follows that (l, ν ′) ∈ [[µZ.ϕ1]]
M
ϑ . ÁÁÁ

We now show that the natural semantics and the restricted semantics of a timed sys-
tem as introduced in Definition 7.13 are indistinguishable in the next-free µ-calculus.
Intuitively, sentences in Lµ can not distinguish quantitative values of clocks, and
therefore all configurations with identical control locations and µ-equivalent clock
evaluations satisfy the same set of Lµ sentences.

Theorem 7.18 Let S be a timed system with clocks C, largest constant c, natural
semanticsM, and restricted semanticsMR. Under the non-convergence assumption
for M, for every sentence ϕ ∈ Lµ:

[[ϕ]]M = [[ϕ]]MR

Proof: The proof works by structural induction on the formula ϕ, where we
strengthen the claim to [[ϕ]]Mϑ = [[ϕ]]MR

ϑ for arbitrary valuation functions ϑ.

ϕ = tt By Definition 7.15, [[tt]]Mϑ
def
= S

def
= [[tt]]MR

ϑ

ϕ = p By Definition 7.15, [[p]]Mϑ
def
= {(l, ν)

∣∣ p ∈ P (l)} def
= [[p]]MR

ϑ

Induction Hypothesis: assume we already established [[ϕ′]]Mϑ = [[ϕ′]]MR

ϑ for all sub-
formulas ϕ′ of ϕ and all valuation functions ϑ.

7.4. Timed Systems with Restricted Delay Steps 133

ϕ = ϕ1 ∧ ϕ2 By Definition 7.15 and by Induction Hypothesis we have that

[[ϕ1 ∧ ϕ2]]
M
ϑ

def
= [[ϕ1]]

M
ϑ ∩ [[ϕ2]]

M
ϑ

I.H.
= [[ϕ1]]

MR

ϑ ∩ [[ϕ2]]
MR

ϑ

def
= [[ϕ1 ∧ ϕ2]]

MR

ϑ

ϕ = ¬ϕ1 By Definition 7.15 and by Induction Hypothesis we have that

[[¬ϕ1]]
M
ϑ

def
= S \ [[ϕ1]]

M
ϑ

I.H
= S \ [[ϕ1]]

MR

ϑ

def
= [[¬ϕ1]]

MR

ϑ

ϕ = ϕ1 ∃Uϕ2 According to Definition 7.15, s ∈ [[ϕ1 ∃Uϕ2]]
M
ϑ iff there exists an

path starting at s such that

si ∈ [[ϕ2]]
M
ϑ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]

M
ϑ (∗∗)

Since every path in the restricted semantics is also a path in the natural semantics,
it suffices to show that for every path in the natural semantics which validates (∗∗),
there exists a path in the restricted semantics which also validates (∗∗). First, we
show that a delay step in⇒ \ ⇒R does not step across the border of any region. Let

(l, ν)
d
−→ (l, ν + d) be a delay step in M but not in MR. Then by Definition 7.12:

¬ (∃x ∈ C. ∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + d ≥ k))
⇔ ∀x ∈ C. ∀k ∈ {0, . . . , c}. (ν(x) 6= k ∧ (ν(x) < k ⇒ ν(x) + d < k))
⇔ ∀x ∈ C. bν(x)c < ν(x), ν(x) + d < bν(x) + 1c

Consequently, it is the case that ν ≡S (ν + d). Using Lemma 7.17, for (s, s′) ∈
⇒ \ ⇒R it holds that s ≡M s′. Now, consider a finite path σ = (s1 ⇒ . . . ⇒ si)
with si ∈ [[ϕ2]]

M
ϑ and ∀ 1 ≤ j < i. sj ∈ [[ϕ1]]

M
ϑ . We transform this path σ to

a restricted path σR by removing the steps not contained in ⇒R and by merging
adjacent delays. Using Lemma 7.17, all se+f = (le+f , νe+f) with le+f = le and
νe+f ≡S νe, are µ-equivalent, that is, (le+f , νe+f) ≡M (le, νe). Removing all se+f
with f ≥ 1 from σ yields the sub-path

τR = (s1 = sk1 ⇒R sk2 · · · ⇒R skm = si), kh ∈ {1, . . . , i}, kh < kh+1

such that skm ∈ [[ϕ2]]
M
ϑ and for all h < m, skh ∈ [[ϕ1]]

M
ϑ . By induction hy-

pothesis, skm ∈ [[ϕ2]]
MR

ϑ and for all h < m, skh ∈ [[ϕ1]]
MR

ϑ . Since both guards
and invariants are timing constraints in Constr, they have identical truth values
for the clock evaluations of se and se+f . Thus every step sk1 ⇒R sk2 is indeed
possible according to the restricted semantics, and σR is a restricted path. Thus
[[ϕ1 ∃Uϕ2]]

M
ϑ = [[ϕ1 ∃Uϕ2]]

MR

ϑ .

ϕ = ϕ1 ∀Uϕ2 According to Definition 7.15, s ∈ [[ϕ1 ∀Uϕ2]]
M
ϑ iff for all paths

starting at s the following holds:

si ∈ [[ϕ2]]
M
ϑ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]

M
ϑ (∗∗∗)

134 Chapter 7. Abstract Interpretation of Dense Real-Time

Every path in the restricted semantics is also a path in the natural semantics. We
have to establish that if a path in the natural semantics violates the condition (∗∗∗),
then also a path in the restricted semantics does.

Assume a path σ = s1 ⇒ s2 ⇒ · · · in the natural semantics, that violates the
condition

(?) := ∃i. si ∈ [[ϕ2]]
M
ϑ and for all 1 ≤ j < i, sj ∈ [[ϕ1]]

M
ϑ .

Now we show that there exists also a path σR = (s = sk1 ⇒R sk2 ⇒R · · ·) in the
restricted semantics that violates (?).

If σ is either finite or contains infinitely many state transition steps, then—by
the same argument as in the previous case—there exists also a sub-path σR of σ,
where no two subsequent configurations have clock evaluations in the same region
and σR violates (?).

Suppose σ is infinite and contains only finitely many state transition steps. By
the non-convergence assumption it cannot contain an infinite suffix of delay steps,
without exceeding the largest constant c for every clock at some point sk. By
Lemma 7.17, sk ≡M sk′ for all k

′ ≥ k. Therefore, if σ violates (?), then already the
finite prefix s1 ⇒ · · · ⇒ sk does. For this finite prefix we can construct a sub-path
σR according to the restricted semantics as before.

Thus [[ϕ1 ∀Uϕ2]]
M
ϑ = [[ϕ1 ∀Uϕ2]]

MR

ϑ .

ϕ = Z By Definition 7.15 it follows [[Z]]Mϑ
def
= ϑ(Z)

def
= [[Z]]MR

ϑ .

ϕ = µZ.ϕ1 By Definition 7.15 and Induction Hypothesis it follows

[[µZ.ϕ1]]
M
ϑ

def
=
⋂{

E ⊆ S
∣∣ [[ϕ1]]

M
ϑ[Z:=E] ⊆ E

}
I.H
=

I.H
=
⋂{

E ⊆ S
∣∣ [[ϕ1]]

MR

ϑ[Z:=E] ⊆ E
}

def
= [[µZ.ϕ1]]

MR

ϑ .

¤

This result allows us to focus on the restricted semantics of timed systems only,
since any result expressible in Lµ for the restricted semantics MR also holds for
the natural semantics M. In the sequel we omit the indices R; thus the system M
and the transition relation ⇒ denote a restricted system and a restricted transition
relation, respectively.

7.5 Predicate Abstraction for Real-Time Systems

We adopt predicate abstraction for dense real-time systems, while focusing on the
approximation of clock regions.

Definition 7.19 (Abstraction Predicates) Given a set of clocks C, an ab-
straction predicate with respect to C is any formula with the set of free variables

7.5. Predicate Abstraction for Real-Time Systems 135

in C. Similarly to timing constraints, the value of an abstraction predicate ψ with
respect to a clock evaluation ν, where both free and bound variables are interpreted
in the domain C, is denoted by the juxtaposition ψν. Whenever ψν evaluates to tt,
we write ν |≈ψ.

A set of abstraction predicates Ψ = {ψ0, · · · , ψn−1} determines an abstraction func-
tion α, which maps clock valuations ν to a bit-vector b of length n, such that the i-th
component of b is set if and only if ψi holds for ν. Here, we assume that bit-vectors
of length n are elements of the set Bn, which are functions of domain {0, · · · , n− 1}
and codomain {0, 1}. The inverse image of α, that is, the concretization function
γ, maps a bit-vector to the set of clock valuations which satisfy all ψi whenever
the i-th component of the bit-vector is set. Thus, a set of concrete states (l, ν) is
transformed by the abstraction function α into the abstract state (l, α(ν)), and an
abstract state (l, b) is mapped by γ to a set of concrete states (l, γ(b)).

Definition 7.20 (Abstraction/Concretization) Let C be a set of clocks and
VC the corresponding set of clock valuations. Given a finite set of predicates Ψ =
{ψ0, · · · , ψn−1}, the abstraction function α : L× VC → L× Bn is defined by

α(l, ν)(i) := (l, ψiν)

and the concretization function γ : L× Bn → L× 2VC is defined by

γ(l, b) := {(l, ν) ∈ L× VC | I(l) ∧
n−1∧

i=0

ψiν ≡ b(i)}.

We use the notations α(S) := {α(l, ν) | (l, ν) ∈ S} and γ(SA) := {γ(l, b) | (l, b) ∈
SA}. Now, the abstraction/concretization pair (α, γ) forms a Galois connection.
If l is clear from the context, we use the notation γ(b) to denote the set of clock
evaluations in γ(l, b).

Definition 7.21 (Over-/Under-Approximation) Given a (concrete) transi-
tion system M = 〈SC , P,⇒, sC0 〉, where SC = L × VC and sC0 = (l0, ν0), and
a set Ψ of abstraction predicates, we construct two (abstract) transition systems
M+

Ψ = 〈SA, P,⇒+, sA0 〉, and M
−
Ψ = 〈SA, P,⇒−, sA0 〉.

• SA := L× Bn,

• (l, b)⇒+ (l′, b′) iff ∃ν ∈ γ(b). ∃ν ′ ∈ γ(b′). (l, ν)⇒(l′, ν ′),

• (l, b)⇒− (l′, b′) iff ∀ν ∈ γ(b). ∃ν ′ ∈ γ(b′). (l, ν)⇒(l′, ν ′), and

• sA0 := (l0, b0), where b0(i) = 1 iff ν0 |= ψi.

M+
Ψ is called an over-approximation of M, M−

Ψ is an under-approximation of M.

136 Chapter 7. Abstract Interpretation of Dense Real-Time

l0, ψ

l1, ψ

l2, ψ

l0,¬ψ

l1,¬ψ

l2,¬ψ

(i) Over-approximation

l0, ψ

l1, ψ

l2, ψ

l0,¬ψ

l1,¬ψ

l2,¬ψ

(ii) Under-approximation

Figure 7.4: Approximation of the Timed System from Figure 7.2 With ψ ≡ x > y.

Since γ(b) 6= ∅, we have that ⇒− ⊆ ⇒+.

Example 7.22 Figure 7.4 shows the over- and under-approximation of the (con-
crete) system from Figure 7.2 with respect to the predicate set Ψ = {x > y}.

For the transition relations ⇒− and ⇒+ we define γ(⇒−), respectively γ(⇒+) as
follows:

γ(⇒−) := {((l, ν), (l′, ν ′)) ∈ SC | ∃b, b′. (l, b)⇒− (l′, b′) ∧ ν ∈ γ(b) ∧ ν ′ ∈ γ(b′)}
γ(⇒+) := {((l, ν), (l′, ν ′)) ∈ SC | ∃b, b′. (l, b)⇒+ (l′, b′) ∧ ν ∈ γ(b) ∧ ν ′ ∈ γ(b′)}

Lemma 7.23 For a (concrete) transition system M with the transition relation
⇒ and the corresponding over- and under-approximations M+

Ψ, M
−
Ψ with respective

transition relations ⇒+, ⇒− it is the case that

1. γ(⇒−) ⊆ ⇒ ⊆ γ(⇒+), and

2. ⇒− ⊆ α(⇒) ⊆ ⇒+.

Proof: Follows from Definition 7.21.
ÁÁÁ

Definition 7.24 (Predicate Abstraction) Let M= 〈SC , P,⇒, sC0 〉 be a tran-
sition system with corresponding over-approximation M+

Ψ = 〈SA, P,⇒+, sA0 〉, and
under-approximation M−

Ψ = 〈SA, P,⇒−, sA0 〉, as given in Definition 7.21. Then,

the predicate abstracted semantics [[ϕ]]
Mς
Ψ

ϑ , where ς is either + or −, of a formula
ϕ ∈ Lµ with respect to a valuation function ϑ and the finite transition systems Mς

Ψ

is defined in a mutually inductive way. The notation ς is used to toggle the sign ς.

7.5. Predicate Abstraction for Real-Time Systems 137

[[tt]]
Mς
Ψ

ϑ := SA

[[p]]
Mς
Ψ

ϑ :=
{
(l, b) ∈ SA

∣∣ p ∈ P (l)
}

[[ϕ1 ∧ ϕ2]]
Mς
Ψ

ϑ := [[ϕ1]]
Mς
Ψ

ϑ ∩ [[ϕ2]]
Mς
Ψ

ϑ

[[¬ϕ]]
Mς
Ψ

ϑ := SA \ [[ϕ]]
Mς
Ψ

ϑ

[[ϕ1 ∃Uϕ2]]
Mς
Ψ

ϑ := {s0 ∈ S
A
∣∣ there exists a path σ = (s0 ⇒

ς s1 ⇒
ς . . .),

s.t. si ∈ [[ϕ2]]
Mς
Ψ

ϑ for some i ≥ 0, and

for all 0 ≤ j < i, sj ∈ [[ϕ1]]
Mς
Ψ

ϑ }

[[ϕ1 ∀Uϕ2]]
Mς
Ψ

ϑ := {s0 ∈ S
A
∣∣ for every path σ = (s0 ⇒

ς s1 ⇒
ς . . .),

there exists i ≥ 0, s.t. si ∈ [[ϕ2]]
Mς
Ψ

ϑ ,

and for all 0 ≤ j < i, sj ∈ [[ϕ1]]
Mς
Ψ

ϑ }

[[Z]]
Mς
Ψ

ϑ := ϑ(Z)

[[µZ.ϕ]]
Mς
Ψ

ϑ :=
⋂
{E ⊆ SA

∣∣ [[ϕ]]
Mς
Ψ

ϑ[Z:=E] ⊆ E}

We also write Mς
Ψ, (l, b), ϑ |=

A ϕ, to denote that (l, b) ∈ [[ϕ]]
Mς
Ψ

ϑ .

Theorem 7.25 (Soundness of Abstraction)
Let M = 〈SC , P,⇒, sC0 〉 be a transition system, Ψ a set of abstraction predicates,
and M+

Ψ, M
−
Ψ the over-approximation and under-approximation of M with respect

to Ψ. Let γ be the concretization function with respect to Ψ. Then for any sentence
ϕ ∈ Lµ the following holds:

γ([[ϕ]]M
−
Ψ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M

+
Ψ)

Proof: The proof is by induction on the structure of ϕ. We show here only the
case ϕ = ϕ1 ∃Uϕ2. By induction hypothesis we have that

γ([[ϕ1]]
M−
Ψ) ⊆ [[ϕ1]]

M ⊆ γ([[ϕ1]]
M+
Ψ)

and
γ([[ϕ2]]

M−
Ψ) ⊆ [[ϕ2]]

M ⊆ γ([[ϕ2]]
M+
Ψ).

Let Ãς
γ , Ãα denote the transition relations γ(⇒ς), α(⇒) respectively.

γ([[ϕ1 ∃Uϕ2]]
M−
Ψ) =

= /? by Definition 7.24 ?/

γ({s0 ∈ S
A | there exists a path σ = (s0 ⇒

− s1 ⇒
− . . .), s.t.

si ∈ [[ϕ2]]
M−
Ψ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]

M−
Ψ})

138 Chapter 7. Abstract Interpretation of Dense Real-Time

= /? by Definition 7.24 ?/

{s ∈ γ(SA) | there exists a path σ = (γ(s0)Ã
−
γ γ(s1)Ã

−
γ . . .)

with s = γ(s0),

and Ã−γ = γ(⇒−), s.t. γ(si) ∈ γ([[ϕ2]]
M−
Ψ) for some i ≥ 0,

and for all 0 ≤ j < i, γ(sj) ∈ γ([[ϕ1]]
M−
Ψ)}

= /? by induction hypothesis ?/

{s ∈ γ(SA) | there exists a path σ = (γ(s0)Ã
−
γ γ(s1)Ã

−
γ . . .)

with s = γ(s0),

and Ã−γ = γ(⇒−), s.t. γ(si) ∈ [[ϕ2]]
M for some i ≥ 0,

and for all 0 ≤ j < i, γ(sj) ∈ [[ϕ1]]
M}

⊆ /? by Definition 7.21 and Lemma 7.23 ?/

{sc ∈ SC | there exists a path σ = (sc0 ⇒ sc1 ⇒ . . .) with sc = sc0,

and sci ∈ γ(si), for all i ≥ 1, s.t. sci ∈ [[ϕ2]]
M for some i ≥ 0,

and for all 0 ≤ j < i, scj ∈ [[ϕ1]]
M}

⊆ /? by Definition 7.15 ?/

[[ϕ1 ∃Uϕ2]]
M

[[ϕ1 ∃Uϕ2]]
M =

= /? by Definition 7.15 ?/

{sc0 ∈ S
C | there exists a path σ = (sc0 ⇒ sc1 ⇒ . . .), s.t.

sci ∈ [[ϕ2]]
M for some i ≥ 0, and

for all 0 ≤ j < i, scj ∈ [[ϕ1]]
M

⊆ /? by Definitions 7.20 and 7.21 ?/

γ({sa ∈ α(SC) | there exists a path σ = (sa0 Ãα s
a
1 Ãα . . .)

with sa = sa0,

and Ãα= α(⇒), and sai = α(si), for all i ≥ 1, s.t.

sai ∈ [[ϕ2]]
M+
Ψ for some i ≥ 0, and

for all 0 ≤ j < i, saj ∈ [[ϕ1]]
M+
Ψ})

7.6. Sets of Basis Predicates 139

⊆ /? by Lemma 7.23-2 and since γ is monotone ?/

γ({sa ∈ α(SC) | there exists a path σ = (sa0 ⇒
+ sa1 ⇒

+ . . .)

with sa = sa0,

and sai = α(si), for all i ≥ 1, s.t. sai ∈ [[ϕ2]]
M+
Ψ for some i ≥ 0,

and for all 0 ≤ j < i, saj ∈ [[ϕ1]]
M+
Ψ})

= /? by Definition 7.24 ?/

γ([[ϕ1 ∃Uϕ2]]
M+
Ψ)

¤

Example 7.26 Consider our running example in Figure 7.2, for which we want to
verify that location l2 is never reached. This property is expressed by the µ-calculus
formula

ϕ := ¬tt ∃U at l2

where at l2 ∈ A is a (Boolean) proposition that is true iff the system is in location l2.
The over-approximation of M with respect to the abstraction predicate ψ ≡ (x > y)
is shown in Figure 7.4. According to Definition 7.24, the set of abstract states of
M+
{ψ} which validate ϕ is given by

[[¬tt ∃U at l2]]
M+
{ψ} = SA \ [[tt ∃U at l2]]

M−
{ψ} = {(l0, ψ), (l0,¬ψ), (l1,¬ψ)} .

Since the initial state (l0,¬ψ) ofM
+
{ψ} is contained in this set, the formula ϕ holds on

the abstract transition system. Thus, M+
{ψ}, (l0, b0) |=

A ϕ holds. By Theorem 7.25,

property ϕ also holds on the concrete transition system, M, (l0, ν0) |= ϕ.

An interesting aspect of this example is that the over- and under-approximations
with respect to only a single abstraction predicate ψ already coincide. We now give
a criterion, based on the notion of regions, for a set of abstraction predicates, which
is sufficient for guaranteeing convergence in general.

7.6 Sets of Basis Predicates

A basis is a set of abstraction predicates that is expressive enough to distinguish
between two clock regions. If a basis is used for predicate abstraction, then the
approximation is exact with respect to the next-free µ-calculus.

Definition 7.27 (Basis) Let S be a timed system with clock set C and let Ψ be
a set of abstraction predicates. Then Ψ is a basis with respect to S iff for all clock
evaluations ν1, ν2 ∈ VC

(∀ψ ∈ Ψ. ν1 |≈ψ ⇔ ν2 |≈ψ) implies ν1≡S ν2 .

140 Chapter 7. Abstract Interpretation of Dense Real-Time

For example, for a timed system S with clock set C and largest constant c, the
(infinite) set of clock constraints Constr, the (infinite) set of invariant constraints
Inv , the (finite) set of clock constraints Constr(c) with largest constant c as the
largest constant of S, and the (finite) set of membership predicates for the quotient
VC modulo ≡S are all basis sets. Since the set of predicates Constr(c) is finite,
there is a finite basis for every timed automaton. Notice, however, that this basis is
not necessarily minimal.

Example 7.28 The set Ψ := {x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤ 1, y ≥ 1, x >
y, x < y} is a basis for the timed system in Figure 7.2.

Theorem 7.29 Let S be a timed system with clock set C and largest constant c,
and M the corresponding transition system. Let Ψ be a basis with respect to S, and
M−

Ψ, M
+
Ψ the under- and over-approximation of M with respect to Ψ. Then, for

any sentence ϕ ∈ Lµ,

[[ϕ]]M
−
Ψ = [[ϕ]]M

+
Ψ.

Proof: Since it suffices to show that ⇒−⊇⇒+, we assume two configurations
(l, b) and (l′, b′) such that (l, b)⇒+ (l′, b′). According to Definition 7.21, there exist
ν ∈ γ(b) and ν ′ ∈ γ(b′) such that (l, ν)⇒(l′, ν ′).

In case (l, ν)⇒(l′, ν ′) holds due to a state transition step, all the guards g of

some transition l
g,r
−→ l′ evaluate to the true value for ν ∈ γ(b). Since Ψ is a

basis, the guards then evaluate to the true value for all clock evaluations ν̃ ∈ γ(b)
(Definition 7.27). The clock values at ν ′ are either identical to ν, or are reset to
0 (for clocks x ∈ r). Thus for all clock evaluations ν̃ ∈ γ(b), the state transition

step l
g,r
−→ l′ can be applied and leads to a clock evaluation ν̃ ′, such that ν̃ ′ ≡S

ν ′ ∧ (l, ν̃)⇒(l′, ν̃ ′). Then, by Definition 7.21, (l, b)⇒− (l′, b′).
In case (l, ν)⇒(l′, ν ′) holds due to a delay step, then l = l′ and the invariants I(l)

evaluate to the true value for ν ′ ∈ γ(b′). Since invariant expressions are taken from
Inv , by Definition 7.27, the invariants evaluate to the true value for all ν̃ ′ ∈ γ(b′).
Moreover, Definition 7.12 requires that ν and ν ′ are not in the same region, and
thus a delay step according to the restricted semantics is possible. Consequently, at
location l, for all ν̃ ∈ γ(b), a delay step to some ν̃ ′ ∈ γ(b′) is possible. Again, by
Definition 7.21, (l, b)⇒− (l′, b′).

¤

Corollary 7.30 (Basis Completeness) Let S = 〈L,P,C, T, l0, I〉 be a timed
system, M = 〈L × VC , P,⇒, (l0, ν0) 〉 the corresponding transition system, let Ψ be
a basis for S, and let γ(b0) = ν0. Then for any sentence ϕ ∈ Lµ:

(l0, b0) ∈ [[ϕ]]M
−
Ψ ⇔ (l0, ν0) ∈ [[ϕ]]M ⇔ (l0, b0) ∈ [[ϕ]]M

+
Ψ .

Proof: By Theorem 7.25, γ([[ϕ]]M
−
Ψ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M

+
Ψ). By Theorem 7.29,

[[ϕ]]M
−
Ψ = [[ϕ]]M

+
Ψ , and thus γ([[ϕ]]M

−
Ψ) = γ([[ϕ]]M

+
Ψ).

¤

7.7. Refinement of the Abstraction 141

7.7 Refinement of the Abstraction

Given a concrete model M of a timed system, a finite basis Ψ of abstraction
predicates, and a formula ϕ. We present an algorithm for computing an over-
approximation ofM that is sufficient to prove or refute the model checking problem
M |= ϕ. The algorithm starts with a rough approximation of M based on a subset
of basis predicates. This approximation converges towards an exact representation
via stepwise refinement.

The abstraction-refinement algorithm is displayed in Figure 7.5. The variables
Ψnew and Ψact store the currently unused and used abstraction predicates, respec-
tively. Initially Ψact contains a subset Ψ′ of predicates from the basis, and Ψnew

contains the remaining predicates (lines (2)-(4) in Figure 7.5).
First over- and under-approximation of M with respect to the set Ψact is com-

puted. Now it is checked whether the approximation suffices to establish validity of
the formula ϕ. This is done by calling a finite-state µ-calculus model checker. If the
approximation can guarantee that initial state s0 is in [[ϕ]]ϕM , then our algorithm

returns true (line (6)). Otherwise s0 6∈ γ
(
[[ϕ]]

M−
Ψact

)
and the µ-calculus model

checker returns a counterexample in form of an abstract path (see [Kic96]). If for
the abstract path there exists a corresponding path in the concrete transition sys-
tem, then we get a counterexample for the concrete model checking problem (lines
(9)-(12)). In this case the algorithm returns false.

This check requires an off-the-shelf satisfiability-checker for the boolean combi-
nation of linear arithmetic constraints such as ICS [FORS01]. In case the abstract
counterexample is spurious, there exists a smallest index k and a concrete path y0 ⇒
· · · ⇒ yk, where y0 is the initial location of M, and for all i ∈ {0, · · · , k}, yi ∈ γ(si),
such that there is no (concrete) transition from yk to yk+1, where yk+1 ∈ γ(sk+1)
(lines (13)-(16)). We choose a minimal set of new abstraction predicates from Ψnew

such that the transition from sk to sk+1 is eliminated (lines (17)-(20)). This new set
of abstraction predicates is chosen in such a way that the formula

∃ y1, y2 ∈ S
C . y1 ∈ γ(sk) ∧ y2 ∈ γ(sk+1) ∧ y1 ; y2

holds. Notice that the concretization function γ depends on the current set Ψact of
abstraction predicates.

Theorem 7.31 (Termination, Soundness, and Completeness)
LetM be a transition system with a corresponding finite basis Ψ, and ϕ a sentence in
Lµ. Then the algorithm in Figure 7.5 always terminates. Moreover, if it terminates
with true, then M |= ϕ, and if the result is false, then M 6|= ϕ.

Proof: By Theorem 7.25 it follows that a given answer is correct. Let n be
the cardinality of the basis Ψ. Every execution of the loop (line 4) adds at least
one new predicate from the basis (line 17). After at most n iterations we have

[[ϕ]]
M−
Ψact = [[ϕ]]

M+
Ψact by Theorem 7.29. Then the algorithm necessarily terminates,

since either ϕ can be established or a concrete counter-example can be derived.
¤

142 Chapter 7. Abstract Interpretation of Dense Real-Time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Algorithm: abstract and refine

input: M, ϕ, basis Ψ

output: answer to model checking query M
?

|= ϕ

Choose Ψ′ = {ψ1, . . . , ψi} from Ψ
Ψnew := Ψ \Ψ′

Ψact := Ψ′

Loop

If s0 ∈ γ
(
[[ϕ]]

M−
Ψact

)

Then Return true

Else Let (s0 ⇒
+ s1 · · · ⇒

+ sn) be a counterexample

If ∃ path σ = (y0 ⇒ y1 · · · ⇒ yn)
such that y0 = s

C
0 and yi ∈ γ(si) for all 0 ≤ i ≤ n

Then Return false

Else Let k be s.t. ∃ path σ = (y0 ⇒ y1 · · · ⇒ yk)
where y0 = sC0 and

yi ∈ γ(si) for all 0 ≤ i ≤ k and
∀ yk+1 ∈ γ(sk+1). yk ; yk+1

Choose minimal Ψ′ = {ψ1, . . . , ψi} from Ψnew with
∀ y1 ∈ γ(sk), y2 ∈ γ(sk+1). y1 ; y2

Ψact := Ψact ∪Ψ′

Ψnew := Ψnew \Ψ
′

Endloop

Figure 7.5: Iterative Abstraction-Refinement Algorithm.

Example 7.32 Consider again the timed system from Figure 7.2, and the formula
ϕ := ¬tt ∃U at l2 which describes the property that location l2 is never reached. A
given basis for this system is Ψ := {x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤ 1, y ≥
1, x > y, x < y}. The transition system of the initial over-approximation with the
single abstraction predicate {x = 0} is shown in Figure 7.6, where ψ0 denotes the
abstraction predicate.

Here s0 = (l0, x = y = 0) 6∈ γ
(
[[ϕ]]

M−
{x=0}

)
. Instead a counterexample can be derived

via s0 ∈ γ
(
[[¬ϕ]]

M+
{x=0}

)
= γ

(
[[tt ∃U at l2]]

M+
{x=0}

)
.

(l0, ψ0)⇒
+ (l1, ψ0)⇒

+ (l0,¬ψ0)⇒
+ (l1,¬ψ0)⇒

+ (l2,¬ψ0)

which is emphasized in Figure 7.6 using lines in bold face. The concretizations of the
states on this abstract path are as follows. To simplify the notation we denote sets of

7.7. Refinement of the Abstraction 143

l0, ψ0

l0,¬ψ0

l1, ψ0

l1,¬ψ0

l2, ψ0

l2,¬ψ0

Figure 7.6: Over-Approximation of the System From Figure 7.2 With ψ0 ≡ x = 0.

configurations such as {(l, ν) | l = l1 ∧ ν(x) = 0 ∧ ν(y) ≥ 0} by (l1, x = 0 ∧ y ≥ 0).

γ(s0) = γ((l0, ψ0)) = (l0, γ(ψ0)) = (l0, x = 0 ∧ y ≥ 0)

γ(s1) = γ((l1, ψ0)) = (l1, γ(ψ0)) = (l1, x = 0 ∧ y ≥ 0)

γ(s2) = γ((l0,¬ψ0)) = (l0, γ(¬ψ0)) = (l0, x > 0 ∧ y ≥ 0)

γ(s3) = γ((l1,¬ψ0)) = (l1, γ(¬ψ0)) = (l1, x > 0 ∧ y ≥ 0)

γ(s4) = γ((l2,¬ψ0)) = (l2, γ(¬ψ0)) = (l2, x > 0 ∧ y ≥ 0)

Now we have to check if there is a corresponding counterexample on the concrete tran-
sition system. If there exists a path y0 ⇒ y1 ⇒ y2 ⇒ y3 ⇒ y4, where y0, y1, y2, y3, y4 ∈
SC , such that y0 ∈ γ(s0), y1 ∈ γ(s1), y2 ∈ γ(s2), y3 ∈ γ(s3), y4 ∈ γ(s4), and
y0 = s

C
0 . This is the case if the formula

F1 := ∃ y0, y1, y2, y3, y4 ∈ S
C .

y0 ∈ γ(s0) ∧ y1 ∈ γ(s1) ∧ y2 ∈ γ(s2) ∧ y3 ∈ γ(s3) ∧ y4 ∈ γ(s4) ∧

y1 ⇒ y2 ∧ y2 ⇒ y3 ∧ y3 ⇒ y4 ∧

y0 = sC0

is valid. In our example, F1 is unsatisfiable, since on the concrete transition sys-
tem there is no transition between y3 and y4, as it is illustrated by the following path.

(l0, x = y = 0)︸ ︷︷ ︸
3y0

⇒ (l1, x = 0 ∧ 0 ≤ y ≤ 1)︸ ︷︷ ︸
3y1

⇒

(l0, x > 0 ∧ y ≤ 1 ∧ x ≥ y)︸ ︷︷ ︸
3y2

⇒ (l1, x > 0 ∧ y > x)︸ ︷︷ ︸
3y3

Thus, k = 3 in our algorithm, and we choose a new set of abstraction predicates such
that there exist concrete configurations y1, y2 ∈ S

C with y1 ∈ γ(s3) and y2 ∈ γ(s4)
such that there is no transition from y1 to y2. For example, by choosing the new
abstraction predicate ψ1 ≡ x > y the formula ∃ y1, y2 ∈ SC . y1 ∈ γ(s3) ∧ y2 ∈
γ(s4) ∧ y1 ; y2 can be shown to hold using a verification procedure for this decid-
able fragment of arithmetic. Figure 7.7 shows the reachable fragment of the resulting

144 Chapter 7. Abstract Interpretation of Dense Real-Time

over-approximation M+
{ψ0,ψ1}

. Testing for s0
?
∈ [[¬tt ∃U at l2]]

M−
Ψact

succeeds, since

no state (l2,) is reachable in M+
{ψ0,ψ1}

.

l0, ψ0 ∧ ¬ψ1

l0,¬ψ0 ∧ ψ1

l1, ψ0 ∧ ¬ψ1

l1,¬ψ0 ∧ ψ1

Figure 7.7: Over-Approximation (Reachable Part) of the Timed System From Fig-
ure 7.2 With Ψ = {x = 0, x > y}.

7.8 Reflection: Abstractions of Real-Time Systems

We have presented a verification algorithm for timed automata based on predicate
abstraction, un-timed model checking, and decision procedures for the Boolean com-
bination of linear arithmetic constraints. The main advantage of this approach is
that bisimilar time-abstractions are computed lazily. This can result in substan-
tial savings in computation, whenever coarse abstractions are sufficient to prove the
property at hand. Initial investigations are encouraging in that standard benchmark
examples for timed systems such as the train-gate controller and a version of the
Fischer mutual exclusion protocol can generally be proved using only a few abstrac-
tion predicates. Such an observation has already been made by Alur, Itai, Kurshan,
and Yannakakis [AIKY95] in a similar context. However, more experimentation is
needed to corroborate the conjecture that many real-life timed systems can already
be verified with rather coarse-grain abstractions.

Related Work

Our introduction of a non-convergence assumption can be seen as a syntactic way
of enforcing fairness in the system. The main purpose is to get rid of self-loops
in the abstracted system that are caused by infinitesimal delay steps in the con-
crete one. Uribe [Uri98] distinguishes between three different approaches in the
literature for building fairness into the abstraction: first, by adding new fairness
constraints to the abstract system, second, by incorporating fairness into the logic,
and third, by modifying the finite-state model checker. Thus our restriction of the
delay steps constitutes a fourth approach. Our restriction is a manifestation of a

7.8. Reflection: Abstractions of Real-Time Systems 145

weaker assumption than non-zenoness. With respect to next-free µ-calculus, natu-
ral semantics plus the non-convergence assumption and restricted semantics without
additional assumptions are equivalent.

The algorithm as described in this paper is restricted to deal with real-time sys-
tems with finite control only. The predicate abstraction of timed systems, however,
can readily be extended to also apply to richer models such as parameterized timed
automata and even to timed automata with other infinite data types such as coun-
ters or stacks. The price to pay, of course, is that such extensions are necessarily
incomplete.

Dill and Wong-Toi [DWT95] also use an iteration of both over- and under-
approximations of the reachable state set of timed automata, but their techniques
are limited to proving invariants. Based on techniques of predicate abstraction,
Namjoshi and Kurshan’s algorithm [NK00] computes a finite bisimulation whenever
it exists. Thus, in principle, their algorithm could be applied to compute finite
bisimulations of timed automata. Currently it is unclear, however, if their approach
is applicable in practice, since there is no explicitly stated upper bound on the num-
ber of abstraction rounds and abstraction predicates needed for convergence. In
contrast, for the special case of timed automata, we are able to predetermine a finite
set of abstraction predicates. Tripakis and Yovine [TY01] show how to abstract
dense real-time in order to obtain time-abstracting, finite bisimulations. Whenever
it suffices to compute rather coarse abstractions, we expect to obtain much smaller
transition systems by means of predicate abstraction and refinement of predicate
abstractions.

The main challenge in successful real-time abstraction seems to be the wise choice
of good predicates. While for data abstraction a rich set of experiences condensed
into default mechanisms, the choices for real-time systems seem to be wide open.

Part III

Making Use of Hierarchical
Structure

147

149

Remember that there are two alleyways to formal verification: The one is
foundation, the other is application.

— Anders Peter Ravn

There is a limit on the number of concepts any one person can keep in mind at
any given time. Hierarchical structures allow a human designer to organize her
understanding of a system. Conceptually lower levels in a hierarchy correspond
to a higher level of detail. Parts that are currently in her focus can be zoomed
in, while others remain on an abstract level.

It is a justified hope that not only humans, but also algorithms can benefit
from the presence of structural information. We address this in Chapter 8, where
we incrementally build a hierarchy over an initial set of unstructured atoms.
The dependencies between atoms guide us in this construction. We compare
hierarchies with each other by means of a heuristic cost function. We use the
model checking tool Mocha to perform a state space exploration on different
hierarchies over the same atoms. Experiments on three benchmark examples
suggest that hierarchies with low cost also yield better performance of the model
checking engine.

The second line of work goes the opposite way: from hierarchical structures
to flat ones. For the implementer of an analytic algorithm, hierarchies add to
complication. It is easier to focus on a small number of core functionalities
with a limited number of dependencies. Often one can rely on the fact that
more sophisticated—or more usable—concepts can be encoded in terms of these
core functionalities. Together with an automated translation, the higher-level
concepts can then be added as syntactic sugar.

In Chapter 9 we follow this approach for the formal verification of the hi-
erarchical timed automata language (introduced in Chapter 3). We report on
construction and implementation of an algorithm that flattens a hierarchical
model to a Uppaal timed automata model. This allows us to make use of the
model checking engine of Uppaal. We sketch a proof of semantic correspondence
between hierarchical and flattened model.

As case study we use the model of a cardiac pacemaker, known as a standard
UML example [Dou99a]. The run-time data we get for model checking suggests
that the overhead introduced by the flattening is tolerable.

Chapter 8

Hierarchical Partitioning

All parts should go together without forcing.
You must remember that the parts you are reassembling were disassembled by you.

Therefore, if you can’t get them together again, there must be a reason.
By all means, do not use a hammer.

— IBM maintenance manual, 1925

Hierarchical partitioning is the successive grouping of a set of components,
starting with a set of atoms, and ending with one single compound. This can
be seen as the construction of a rooted tree, where the leaf-nodes are known
before and every intermediate node has two or more successors.

The number of possible choices suffers a considerable combinatorial explo-
sion, but many of them can be refuted a priori as unreasonable. In this Chapter,
we strive to “discover” good hierarchies. We give a cost measure that allows
us to compare hierarchical partitions, whenever the means of connection can
be adequately described by a hypergraph. Determining the best structure for
this measure is NP-complete.

We present a greedy polynomial-time algorithm that approximates good hi-
erarchical partitions by local evaluation of a heuristic function. We corroborate
applicability and usefulness via three case studies with our implementation of
this algorithm in the model checker Mocha. When applied to a tree-shaped
topology, this results in significant time- and memory-savings. For leader elec-
tion in a ring and a opinion poll protocol, the run-time performance is not
drastically improved.

151

152 Chapter 8. Hierarchical Partitioning

C

BA

D C

BA

D C

BA

D C

BA

D

unpartitioned
graph

(i)
depth: 2

#children: 2,2,2
(ii)

depth: 1
#children: 4

(iii)
depth: 3

#children: 2,2,2

Figure 8.1: Different Ways to Hierarchically Partition a Square.

8.1 How to Group Together?

Imposing a hierarchical structure on a collection of components is helpful in many
contexts for different reasons, such as better understanding and better analysis. The
process can be understood as grouping together a set of items to a new item that
hides the element of the group. This step is repeated, until a single item remains.

Consider four items, call them A, B, C, and D. They may be connected in
some way, say by a mutual dependency. Let us assume that this gives rise to a
ring structure, like in Figure 8.1. Then, instead of viewing the system as a set
with 4 elements, we can understand it structured as {{A,B}, {C,D}}, like in (i).
Here, only two connections A-C and B-D need to be visible (or understood) at the
top level. With the new compounds {A,B} and {C,D} we found a more abstract
description of the same data that can be refined on demand. Another possible
partition is {{A, D}, {B, C}}, but this requires all connections to be visible at the
top-level, and thus should be rejected in favor of the first. We can partition in
a hierarchic fashion: for example, {{{A, B}, C}, D}. In general, given a set, we
partition it, and apply the process recursively to each set in the partition.

The set of distinguishable hierarchical partitions is adequately described as the
set of rooted trees over leaf nodes {A, B, C, D}. In Figure 8.1, we draw these trees
as cascading polygons that may contain other polygons. Every polygon corresponds
to an intermediate node and the outermost polygon to the root. As a rule, we favor
trees that have a low degree of branching and are nevertheless shallow. The diagrams
(ii) and (iii) depict both not very good trees, since they are either too broad or too
deep. Moreover, it is desirable to minimize dependencies among remote tree parts,
i.e., the number of links crossing polygon boundaries should be low.

We can regard this as a general design problem, where trees form an architec-
tural hierarchy over atomic units. This modular description helps to see the same
system on different levels of abstraction or detail. The emphasis on modularity
and hierarchy is a central theme in software engineering, particularly in software
design notations such as Statecharts [Har87] and UML [BRJ99]. While the most
appropriate hierarchical structure can best be chosen by the designer, automatically
constructing a hierarchical partition is required if no manually chosen structure is
available, or if the original structure is lost during translations between models (e.g.,
during the process of abstraction).

Formal verification is a field where structure is particularly useful, since it is

8.1. How to Group Together? 153

generally considered infeasible to deal with unorganized descriptions. Structure
helps to spot design flaws, but it can also be exploited to make algorithmic treatment
more efficient, or even possible at all. Well-known examples for this are model
checking problems. Model checking [CE82, CK96, Hol97] is a powerful technique
for discovering inconsistencies in high-level designs in hardware and communication
protocols. Since it typically requires search in the global state-space, much research
aims at providing heuristics to make this step less time- and space-consuming.

Consider once more the example with the four components. Let us interpret each
atom as a process and each connection as the ability to synchronize on some action.
We view the system hierarchically decomposed as in Figure 8.1 (i). Tools such as
the concurrency workbench [CPS93] can analyze it in the following way. First take
the product of processes A and B. Now their synchronization can be viewed as
internal to this composite process, and we can apply a reduction based on weak
bisimulation minimizing the size. Analogously, compose C with D and minimize.
The obtained description is still adequate, since it shows the same behavior (modulo
the internal synchronization), but questions about this behavior are algorithmically
easier to answer.

An alternative method that benefits from a hierarchical structure is implemented
in a recent version of the model checking tool Mocha, and will form the basis of
the experiments in this paper. The technique, called “Next” heuristic, is a heuris-
tic for on-the-fly search based on compressing unobservable transitions to a single
meta-transition [AW99]. The basic idea is to describe the implementation P in a
hierarchical manner, so that P is a tree whose leaves are atomic processes, and in-
ternal nodes compose their children and hide as many variables as possible. The
basic reduction strategy, proposed by many researchers, is simple: while computing
the successors of a state of a process, apply the transition relation repeatedly until
a shared variable is accessed. This is applicable since changes to a private state
are treated as stuttering steps. The benefit is greatly amplified by applying the
reduction in a recursive manner exploiting the hierarchical structure, and has been
shown to give significant reductions in space and time requirements, particularly for
well-structured systems such as rings and trees.

As a rule, we want to hide variables as soon as possible. At the same time it
is an advantage, if the structure reflects areas of strong interaction, i.e. if many
variables can be hidden in sub-components at the same time. It is to be expected
that even in good hierarchical partitions some variables cannot be hidden early. The
challenge is to make advantageous choices. In last consequence, the quality of our
structure is determined by the savings with respect to a model checking algorithm.
The gain depends heavily on the hierarchical partition we impose. In practice, we
need a measure to to compare different choices that is cheaper to evaluate.1From

1Estimating the run-time of a model checking algorithm cannot be significantly cheaper than
solving the model checking problem itself: suppose a desired safety property does not to hold. Then
the best structure uncovers a short violating path, which is much faster than an exhaustive state
space exploration. We cannot know that this path exists without solving the original problem, thus
we cannot have a tight estimate on the run-time without also knowing the answer.

154 Chapter 8. Hierarchical Partitioning

an academic point of view, run-time comparisons are too dependent on low-level
implementation details to give clear analytic data. Thus we strive for a more abstract
notion of comparison by means of a cost measure. For typical measures, the problem
of finding the best hierarchical decomposition is likely to be NP-hard, and hence we
must look for heuristics that are to be validated by experimentation.

In the following we consider a system to be given as a hypergraph, where processes
are vertices and shared variables among them are represented by hyperedges. We
rearrange the vertices as leaves of a rooted tree T . Hyperedges that range over large
portions of the tree are punished in terms of cost. The problem of structuring the
system reduces then to find a tree of low cost.

8.2 The Tree-Indexing Problem

In the following, we describe systems as hypergraphs, where the atomic units cor-
respond to vertices and their connections are represented by hyperedges. E.g., in a
reactive module description every hyperedge would correspond to a variable shared
by the modules it connects to. Hierarchical partitions introduce an additional tree
structure on top of this hypergraph and are augmented with a cost value. We briefly
treat combinatorial and computational complexity of finding a tree of minimal cost.

A hypergraph H = (C, E) is a finite set of vertices C together with a multi set E ,
where every hyperedge e ∈ E is a subset of C. We assume that every e corresponds
to a unique label `e. Hyperedges of size 0 or 1 are disallowed. We draw hyperedges
as branching lines. This coincides with common graph representation for the special
case that every hyperedge is of size 2.

A tree-indexing T of a hypergraph H = (C, E) is a rooted tree over leaf nodes
C, where every internal node has at least two children. We draw internal nodes
as polygons, all contained polygons and vertices v ∈ C are children of this node.
The outermost polygon corresponds to the root. Every tree-indexing is qualified
by a cost value dependent on E . For instance, in Figure 8.1, the tree-indexing
{{A, B }, {C, D}} is better than {A, B, C, D}, and thus should be of lower cost.

Combinatorial complexity. Given a hypergraph with n labeled vertices, we want to
determine the number T (n) of distinguishable tree-indexings. This is in an equiva-
lent formulation recorded as Schröder’s fourth problem [Sch70]. It can be solved (for
every fixed n) via a generating function method. Let ϕ(z) be the ordinary generating
function, where the nth coefficient corresponds to T (n). Let ϕ̂(z) be its exponential
transform. We can construct an equation that ϕ̂(z) has to satisfy according to the
theory of admissible constructions [Fla88]. Every tree-indexing is either atomic, i.e.
represented as z, or a set of at least two other tree-indexings, namely its children.
This can be expressed using the admissible constructions Union and Set.

ϕ̂(z) = Union (z, Set (ϕ̂(z), cardinality ≥ 2)) (8.1)

8.2. The Tree-Indexing Problem 155

1

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

1e+18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f(n
)

ploynomial: n^3
exponential 2^n

factorial n!
#tree-indexings over n leaf nodes

Figure 8.2: Combinatorial Explosion in the Number of Tree-Indexings.

Equation (8.1) can be transcribed as follows.

ϕ̂(z) = z +
∑
k≥2

1
k! · (ϕ̂(z))

k

⇐⇒ ϕ̂(z) = z + exp (ϕ̂(z)) − ϕ̂(z) − 1

⇐⇒ exp (ϕ̂(z)) = 2 ϕ̂(z)− z + 1

(8.2)

There is no closed form known for ϕ̂(z), ϕ(z), or T (n). However, for every fixed n we
can extract the nth coefficient of ϕ(z) with algebraic methods and thus approximate
T (n), as done in [Fla97]. Figure 8.2 gives an impression how fast this series grows.
Thus we have only little hope to perform an exhaustive search on the domain of
possible tree-indexings.

Computational Complexity. We can formulate the problem of finding a good tree-
indexing as an optimization problem relative to a fixed cost function. This function
should punish both deep structures and hyperedges that span over big subtrees. For
every e ∈ E let Te denote the smallest complete subtree of T , such that every vertex
v ∈ e is a leaf of Te. With leaves(T) we denote the set of leaf nodes in a tree T .
The depth of T is the length of the longest descending path from its root. The depth
cost of a tree T is defined as a function

depth cost(T) :=

{
2 if depth(T)= 1
depth(T) otherwise .

(8.3)

The cost of a tree-indexing T is then defined relative to H = (C, E).

cost(T) :=
∑

e∈E

depth cost(Te) · |leaves (Te) | (8.4)

156 Chapter 8. Hierarchical Partitioning

For example, the tree-indexing (i) in Figure 8.1 has cost 2 · 2 · 2 + 2 · 2 · 4 = 24,
which is preferable to tree-indexings (ii) and (iii) with costs 4 · 2 · 4 = 32 and
2 · 2 + 2 · 3 + 2 · 3 · 4 = 34 respectively. We can transform the problem of finding a
tree-indexing with minimal cost into a decision problem.

Edge-Guided Tree-Indexing: Given a hypergraph H = (C, E) and a number
K ∈ IN . Decide whether there exists a tree-indexing of cost at most K.

The decision problem Edge-Guided Tree-Indexing is NP-complete, even if we
restrict to the special case whereH is a multi graph. This precludes the possibility to
determine an optimal tree-indexing in polynomial time2 and suggests the application
of heuristics in order to find a reasonably good tree-indexing efficiently.

Theorem 8.1 For a multi graph G = (V,E) and an integer K, deciding whether
there exists a tree-indexing T for G with cost at most K is NP-complete.

Proof: Containment in NP is holds, since we can guess any possible tree-indexing
T and compute cost(T) in polynomial time. We show NP-hardness by reduction
from the following NP-complete problem.

Minimum Cut Into Equal-Sized Subsets [GJS76]3 Given a graph G =
(V,E) with specified vertices s, t ∈ V and a positive integer K. It is NP-complete to
answer the following question. Is there a partition of V into disjoint sets V1, V2 such
that s ∈ V1, t ∈ V2, |V1| = |V2|, such that the number of edges with one endpoint
in V1 and the other endpoint in V2 is no more than K?

Note that n := |V | is restricted to be even. For n = 2 there exists only one
solution, thus we consider n ≥ 4. Furthermore, we assume that that m := |E| >
n/4. For smallerm the problem is trivial, since we have at least n/2 isolated vertices.

Reduction. For every instance (G, s, t,K) we construct—in polynomial time and
logarithmic space—an instance (G′,K ′), such that there exists a partition V1, V2
with cost ≤ K if and only if there exists a tree-indexing T of G′ with cost(T) ≤ K ′.

s tn1 =
n−2

2
n2 =

n−2

2

Figure 8.3: Binary, Shallow, and Balanced Tree-Indexing T ∗.

2Unless NP turns out to be equal to P.
3See also: [GJ79], comment to problem Minimum Cut into Bounded Sets (ND17).

8.2. The Tree-Indexing Problem 157

The idea is to augment G in a way, such that a tree-indexing with lowest cost
has the shape of a balanced tree of depth 2 (Figure 8.3). To achieve this, we add
edges leading to the nodes s and t. We call s and t attractors. The number of edges
between V1 and V2 then corresponds to the number of edges between the subtrees
of T plus some offset.

Given G = (V,E), s, t,K, |V | = n, |E| = m. Let V ′ := V \ {s, t}. Then we
define G′ to be the graph with vertices V and 4m2 additional edges between each
v ∈ V ′ and every attractor. We call these edges β-edges and use β := 4m2 as a
parameter.

cost+ := β (2 (n/2− 1) · 2n/2 + (n− 2) · 2n)

K ′ := cost+ + (m−K) · 2n/2 + K · 2n

It suffices to show that an optimal tree-indexing has the shape of a balanced tree
of depth 2. Then the cost for the newly introduced edges is fixed (cost+). We still
have to pay for the edges that originated from E. If they live inside a subtree, they
are cheap (2n/2), else they are punished with factor 2n. It is clear that cost K ′ can
be achieved if and only if a balanced partition of V with at most K edges between
V1 and V2 is possible.

Let T ∗ be a tree-indexing like in Figure 8.3. In the worst case, all m original
edges in E are in between the subtrees. Thus we can give an upper bound cost∗ on
cost(T ∗).

cost∗ := β (2 (n/2− 1) · 2n/2 + (n− 2) · 2n) + m · 2n
= 3β n(n− 2) + 2mn

Lemma 8.2 Let T be a tree-indexing of depth 1. Then cost(T) > cost∗.

Proof: The cost of T is precisely

(2β (n− 2) + m) · 2n =
4β n(n− 2) + 2mn > 3β n(n− 2) + 2mn.

ÁÁÁ

Lemma 8.3 Let T be a tree-indexing, where attractors s and t live in the same
subtree. Then cost(T) > cost∗.

Proof: Suppose a tree-indexing T where t and s live in the same subtree. To
estimate the cost of T , we can assume that the tree containing s, t has no siblings
within subtree 1 (there is additional punishment by increased depth and no gain).
The same holds true for vertices located in a subtree starting at the level of s and
t. Thus we can assume that the two attractors share a subtree of depth 1 with n1
additional vertices and that the remaining (n − n1 − 2) graph nodes are collected
in a second subtree, for in alternative structures the relevant costs are the same or
worse. Thus the only scenario to consider is displayed in Figure 8.4.

158 Chapter 8. Hierarchical Partitioning

n1s t n2 = n – n1 – 2

Figure 8.4: Best Case of a Tree-Indexing T With Attractors in the Same Subtree.

A lower bound on the cost of structure T is obtained by looking only at β edges.
The costs for subtree 1 is β (2n1) · 2 (2 + n1) and the graph violations amount to
cost 2β (n− n1 − 2) · 2n.
Comparing the costs yields

cost(T)− cost∗ =
β (2n1) · 2 (2 + n1) + 2β (n− n1 − 2) · 2n− (3β n(n− 2) + 2mn) =

8β n1 + 4β n1
2 + β n2 − 4β nn1 − 2β n− 2mn =

β
(
n2 − 4n+ 4− 4nn1 + 8n1 + 4n21

)
+ β (2n− 4)− 2mn =

β ((n− 2)− 2n1)
2 + β (2n− 4)− 2mn ≥

4β − 2mn ≥
4mn− 2mn > 0.

ÁÁÁ

We can assume now that the optimal solution (i.e. this that allows the largest
K ′ and thus the largest K) is non-monolithic and that attractors s and t live in
different subtrees. Before we argue that more than two subtrees are too expensive,
we need to state a lower bound on the cost of subtrees with one attractor.

Lemma 8.4 Let T be a tree-indexing where the root has ≥ 3 children, attractor s
lives in subtree 1 and attractor t in subtree 2. Then cost(T) > cost∗.

Proof: Assume that subtrees 1 and 2 contain, in addition to the attractors, p
respectively q nodes, p + q < n − 2. Make a case split on the depth of the tree-
indexing.

(i) The depth of the tree-indexing is 2.
Then the cost can be estimated as in Figure 8.5. It suffices to show the
following inequality:

β p · 2 (p+ 1) + β q · 2 (q + 1) + β n · 2n+ β (n-2-p-q) · 2n > cost∗

⇔ β
(
n2 − 2n− 2np− 2nq + 2 p+ 2 p2 + 2 q + 2 q2

)
− 2mn > 0

⇔ β

(
n2−4n+4−2np− 2nq+p2 + q2+2 pq+4 p+4 q

+2n−4 +p2 + q2−2 pq−2 p−2 q

)
− 2mn > 0

⇔ β
(
((n− 2)− (p+ q))2︸ ︷︷ ︸

≥0

+(p− q)2︸ ︷︷ ︸
≥0

+2 (n− p− q − 2)︸ ︷︷ ︸
≥1

)
− 2mn > 0

⇐ 4m2 · 2 > 2mn

8.2. The Tree-Indexing Problem 159

s tp q
n − 2 − (p + q)

T : cost(T)≥
β p · 2 (p+ 1) inside subtree 1
β q · 2 (q + 1) inside subtree 2
β n · 2n to attractor in other subtree
β (n-2-p-q) · 2n new rightmost violations

Figure 8.5: Lower Bound on Cost of a Non-Binary Tree-Indexing T .

(ii) The depth of the tree-indexing is at least 3.
Then there are (n− 2− p− q) + (n− 2) ≥ n− 1 edges that have to be payed
for with factor β · 3n.

3β n(n− 1) − cost∗ =
3β n − 2mn > 0.

ÁÁÁ

Assuming that the root has exactly two children, we can now exclude tree-indexings
of depth greater than 2.

Lemma 8.5 Let T be a tree-indexing where the root has 2 children, in each subtree
lives one attractor and depth(T) ≥ 3. Then cost(T) > cost∗.

Proof: Every of the n − 2 leaves in V \ {s, t} has β edges to the attractor in
the other subtree. It suffices to estimate the internal costs of the two subtrees with
β 2 · 2 (we have at least two edges somewhere inside).

β (4 + (n− 2) 3n) > cost∗

⇔ 4 · 4m2 > 2mn.

ÁÁÁ

Lemma 8.6 Let T be a tree-indexing where the root has 2 children, in each subtree
lives one attractor, depth(T) = 2 and subtree 1 contains p < (n− 2)/2 nodes from
V \ {s, t}. Then cost(T) > cost∗.

s

T :

p <
n−2

2
s n–2–p

cost(T):
β p · 2 (p+ 1) inside subtree 1
β (n–2–p) · 2 (n–2–p) inside subtree 2
β (n–2) · 2n to attractor in other subtree

Figure 8.6: Lower Bound on Cost of an Unbalanced Tree-Indexing T .

160 Chapter 8. Hierarchical Partitioning

Proof: We can estimate cost(T) as in Figure 8.6.

β (p · 2 (p+ 1) + (n− 2− p) · 2 (n− 2− p) + (n− 2) · 2n) > cost∗

⇔ β
(
4 p2 + 8 p+ n2 − 4n− 4np+ 4︸ ︷︷ ︸

fn(p)

)
> 2mn

The term in fn(p) is minimal for d
dp fn(p) = 0, i.e. for p = n/2−1. Since p ≤ n/2−2

and fn is quadratic in p, it suffices to check the value p0 = n/2− 2.

fn(n/2− 2) = 2 (1/2n− 2) (−1 + 1/2n) + n (1/2n+ 1)− (n− 2)n
= 4

Since 4β = 16m2 > 4mn > 2mn, this proves the lemma.
ÁÁÁ

Thus we can be sure that only binary, shallow and balanced tree-indexings like in
Figure 8.3 are candidates for optimal solutions. The soundness of the reduction
follows.

¤

8.3 A Greedy Algorithm to Partition Hierarchically

In this section we develop a greedy-style algorithm that constructs a tree-indexing
by successively grouping together sets with strong correspondence. The choice of
these candidates relies on heuristics, which make use of a key observation: strong
correspondences are likely to represented by a large number of connections.

A schematic description of our proposed algorithm is given in Figure 8.7. The
variable F is used to maintain a partial tree-indexing, i.e., a forest F with leaves
C. It is initialized as the forest with |C| trees, each consisting of a single node. The
priority queue Q is ordered according to a rating function r : ℘D × 2C? → IR. ℘D

is the set of forests over leaves D ⊆ C and thus contains all possible sub-forests of
F . 2C? denotes a multi set of hyperedges and initially corresponds to E . The top
element of the queue is a subset of F with maximal r-value.

The algorithm proceeds as follows. An initial set of candidates proposed for
grouping together is inserted in the priority queue. Then a small number of exe-
cutions of the while-loop follow. In each execution, the most promising candidate
A is dequeued and the data is updated: in the forest, the trees in A are replaced
by a tree with the fresh root A′ and children t ∈ A. Every set containing trees
t ∈ A is removed from the priority queue and new candidates containing A′ are
inserted. Hyperedges e ⊆ leaves(A′) are deleted, since they should not influence
later selections.

This description leaves open the questions, what should be used as a rating
function and which candidates should be considered. We explain these aspects of
the algorithm in the following.

8.3. A Greedy Algorithm to Partition Hierarchically 161

Algorithm: partition incrementally

input: hypergraph H = (C, E)

output: tree-indexing over leaves C

PriorityQueue Q:=emptyQueue
Forest F := C

Forall considered candidates A ⊆ F
insert(A, Q)

While notempty(Q)

A := top(Q) /? pick the best candidate ?/

let A′ :=fresh root node with children t ∈ A
F := (F \ A) ∪ {A′}
E := E \ {e | e ⊆ leaves(A′)} /? remove covered hyperedges ?/
update(E , A, A′) /? replace all t ∈ A by A′ ?/

Forall B ∈ Q with B ∩ A 6= ∅
remove(B, Q)

Forall new candidates D containing A′

insert(D, Q)

Return F

Figure 8.7: Incremental Algorithm for Constructing a Tree-Indexing.

Developing a good rating function. The local choice of the best candidate could
be performed by means of the cost function defined in (8.4), i.e., by picking the
candidate with lowest cost after clustering. We chose not to do so for two reasons.
First, the specific cost function was derived such that an NP-complete problem could
be encoded into it; for small variations of this definition, the proof failed - thus, this
particular definition is somehow artificial. Second, we would like to tune the choice
by means of parameters in the rating function. Doing this with the cost function
would almost certainly destroy the provable NP-hardness, and thus the justification
for the choice.

Instead, we develop a rating function subsequently by taking into account the—
supposedly—crucial factors concerning the structure of the proposed candidate.
Most importantly, we want to know the number of additional hyperedges that are
completely covered by this set, and thus can be hidden from the outside without
losing information.

Definition 8.7 (Cover Number) Let H = (C, E) be a hypergraph, F a forest
over leaves C, A = {T1, . . . , Tk} ⊆ F . The cover number of A, in symbols 〈〈A〉〉, is
defined as the number of hyperedges covered by the trees in A.

〈〈{T1, . . . , Tk}〉〉 :=
∣∣{`e

∣∣ e ∈ E , e ⊆ leaves(A), ∀i. e 6⊆ leaves(T i)
}∣∣

162 Chapter 8. Hierarchical Partitioning

C

A

B C

A

B

C

F

E

B

A

D

C

F

E

B

A

D

(i) triangle (ii) hexagon

Figure 8.8: Alternative Hierarchical Partitionings: How Strong is a Connection?

Though this value tells a lot about a candidate, it is isolated not a good guide-
line. Recall that the set C has naturally always the highest possible cover number
|{`e

∣∣ e ∈ E}|.

Strength of connections. Figure 8.8 illustrates, how the strength of connection is
not proportional to the edge/node ratio. In the right triangle in (i), it is not intuitive
why one pair {A,B} should be on a level below in the hierarchy. Rather we would
like the left option to be taken. When considering the hexagon instead, the six
hyperedges seem too weak an argument to group this big structure monolithically4;
we would favor the right alternative. So, three components with three links should
be stronger than two with just one. But at the same time, two components with
one link should be rated higher than six components with six links. This suggests
that size is not to be taken as a linear factor.

We relate the cover number to the size n of a candidate, where size matters in
terms of possible connections, which is

(
n
2

)
= O(n2). We propose the following

rating function.

rpref (A) :=
〈〈A〉〉

|A|2
(8.5)

Comparing this to the examples in Figure 8.8, we can verify that rpref precisely
favors the options we argued for. In the following we refine rpref by adding more
structural information.

Definition 8.8 (Touch of a Candidate) Let H = (C, E) be a hypergraph and F
be a forest over leaves C. Then the touch of A ⊆ F is defined as the labels from
hyperedges that connect A with the rest of H.

touch(A) :=
{
`e
∣∣ e ∩ leaves(A) 6= ∅ ∧ e 6⊆ leaves(A)

}

Definition 8.9 (Depth of a Candidate) The depth of a tree with only one node
equals 0. Let F be a forest, A = {T1, . . . , Tk} ⊆ F . The depth of A is defined as

depth ({T1, . . . , Tk}) := 1 + max
1≤i≤k

depth(T i)

4We note that a greedy algorithm can run into a steric trap here: choosing first {A,B} and then
{D,E} yields a sub-optimal hierarchical partitioning.

8.3. A Greedy Algorithm to Partition Hierarchically 163

We do not want to cut out subsystems that are multiply connected to the rest, i.e.,
those who share many hyperedges with their complement. This is reflected by the
number of labels in the touch: if it is small, the candidate is more attractive. Also,
it is perceivable that preference should be given to candidates with small depth.
Hence we propose the following improved rating function.

r+pref (A) :=
〈〈A〉〉

|A|2
+

ε1
|touch(A)|

+
ε2

depth(A)
(8.6)

The parameters ε1 and ε2 are supposed to be chosen small and positive. For the
experiments in Section 8.4, the assignments ε1 := 1/1000, ε2 := 1/100000 were used.

Restricting the set of considered candidates. In our formulation of the algorithm
partition incrementally we remained unclear on what the considered candidates are.
We want to weed out hopeless candidates, e.g., those not sharing any labels, be-
fore adding them to our priority queue. In a positive formulation, consider only
candidates that are extensions of interesting pairs.

Definition 8.10 (Interesting Pair) Given a hypergraph H(C, E) and a forest F
over leaves C. An interesting pair {T1, T2} is a subset of F , such that touch(T1) ∩
touch(T2) 6= ∅.

Clearly, every candidate that is not a superset of an interesting pair has cover
number 0 and thus can be neglected. As it turns out in our implementation, the
expensive part of the algorithm is the computation of the cover numbers. First
computing interesting pairs and then extending them to candidates is an advantage.

The number of candidates can still be excessive. Consider a hyperedge connecting
all vertices, then all pairs are interesting pairs. Since the number of subsets of C
is exponential in |C|, an exhaustive enumeration is not feasible for large systems.
If conservative techniques (like considering just extensions of interesting pairs) do
not suffice, we have to apply a more rigorous pruning, even for the price of thereby
ignoring good candidates. An obvious suggestion is to consider only candidates up
to a certain size k, thus establishing an upper bound of nk+1−n−1 candidates. This
k can be adjusted according to n, which provides a simple and reasonable method
to prune the search.

In the algorithm, the number of forests—initially n—decreases by one with each
execution of the while loop. Operations like evaluating the rating function, testing
B ∩ A 6= ∅, and constructing new candidates containing A′ can be assumed to be
O(n), thus one execution of the while loop has the run-time bound O(n ·nk+1). The
whole algorithm partition incrementally has n executions of the while loop, which
yields the polynomial bound O(nk+3) on its run-time.

164 Chapter 8. Hierarchical Partitioning

req01
ack01

req11
ack11

req001
ack001

req011
ack011

req111
ack111

req101
ack101

req0
ack0

req1
ack1

req000
ack000

req
ack

req100
ack100

req010
ack010

req110
ack110

req00
ack00 req10

ack10

Root

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

Figure 8.9: Layout of an Asynchronous Parity Computer With Eight Clients.

8.4 Experimental Results

We implemented the algorithm from Section 8.3 in an experimental version of the
Mocha model checking tool [AdAG+01] and report run-time data in the following.

For symbolic (BDD-based) model checking, the Java implementation makes use
of native libraries. However, our experiments do not make use of this option and
perform the check in a purely enumerative manner. Therefore, given run-times
(in milli-seconds) and memory requirements are those of the Java Virtual Machine,
executing on a Sun Enterprise 450 with UltraSPARC-II processors, 300 MHz. A con-
tingent of 128 MB of memory was allocated, run-times are in milliseconds. Together
with an optimization in the enumerative check called “Next” heuristic [AW99], we
are able to corroborate effectiveness and usability of our algorithm in some simple
examples. We consider an asynchronous parity computer, leader election in a ring,
and an opinion poll protocol. The Mocha specifications are given in [MA00].

Note that in these experiments the checked property influences the obtained
structure. In Mocha every property relies on variables of the system. These vari-
ables can not be hidden and therefore are neglected in the partition algorithm, i.e.,
they are ignored in the evaluation of the rating function.

8.4.1 Asynchronous Parity Computer

This example models a parity computer, designed as a binary tree (Figure 8.9). The
leaf nodes are Client modules (abbreviated with C), communicating a binary value
to the next higher Join. A simple hand-shake protocol is devised by the two variables
req and ack . All components are supposed to move asynchronously. Thus the join
nodes have to wait for both values to be present, before reporting their exclusive-or
upwards. The Root component, after receiving the result of the computation, hands
down an acknowledgment. When a client receives an acknowledgment, it is able to
devise a fresh value.

8.4. Experimental Results 165

cost: 144
Root

Join

Join0

C00 C01

C1

Root

Join

Join0 Join1

C00 C01 C10 C11

cost: 340

cost: 664

Root

Join

Join00

C000 C001 C010

C1

C011

Join01

Join0

Join

Join0 Join1

Join00 Join01

C000 C001 C010 C011

C10

Root

C11

cost: 1
·
148

cost: 1
·
824

Root

Join

Join0 Join1

Join00 Join01 Join10

C000 C001 C010 C100

C11

C101C011

Join

Join0 Join1

Join00 Join01 Join10

C000 C001 C010 C100 C101 C110

Root

C111C011

Join11

cost:

2
·
724

Figure 8.10: Parity Computers N = 3, . . . , 8, Partitioned via Rating Function rpref .

We consider binary trees with N client nodes, where N varies from 3 to 8. The
number of variables increases linearly with N , whereas the state-space grows expo-
nentially. The sample question we pose is whether the module Root will ever output
a value zero or one. We expect our model checking algorithm to falsify the claim
that it never will.

Reachability involves computing the successors of every state encountered, start-
ing with the initial states. Consider the set S of all the processes. Then, successors
of a state are computed by executing one step of one of the processes in S. Now
suppose, we cluster the processes Join00, C000, and C001 into one composite pro-
cess called P , and replace these three processes in S with P . It is clear that the
communication between J00 with its children clients can be hidden from the rest of
the system. Consequently, in reachability analysis of S, when we compute the suc-
cessors due to execution of P , we can let the subprocesses in P repeatedly execute
until Join00 communicates with its parent Join0. This is formalized in Mocha by
substituting P by a construct next Θ for P , where atomic transitions correspond
to sequences of transitions of P until a variable shared with the remaining system
is accessed. The modified search yields an improved performance as it cuts down
on unnecessary interleavings.5 This scheme can be applied repeatedly. It should be
clear that the effectiveness of the scheme depends on the hierarchical partition.

5A well-known method for reducing state-space in asynchronous systems is based on partial-order
reductions [GPS96]. The “Next” heuristic is incomparable to this method, see [AW99].

166 Chapter 8. Hierarchical Partitioning

cost: 106

Root

Join

C1

C00 C01

Join0

Root

Join

Join0 Join1

C00 C10C01 C11

cost: 200

cost: 334

Root

Join

Join00 Join01

C000 C010

C1

C001 C011

Join0

Root

Join

Join0 Join1

Join00

C000 C010

C10 C11

C011C001

Join01

cost: 394

cost: 546 Root

Join

Join0 Join1

Join00

C010 C011 C100

C11Join01

C001C000 C101

Join10

Root

Join

Join0 Join1

Join00 Join10 Join11

C000 C001 C010 C100 C110 C111

Join01

C011 C101

cost: 724

Figure 8.11: r+pref Yields Shallower Partitions With Lower Cost Values Than rpref .

N partition |table| check

3 162 95 1·121

4 853 645 4·921

5 740 1·943 17·086

6 2·811 16·045 161·394

7 9·928 58·351 694·834

8 47·239 410·901 5·442·315

N partition |table| check

3 105 51 973

4 148 117 1·707

5 627 139 1·780

6 2·097 205 3·000

7 10·592 271 4·395

8 50·664 469 8·322

Using rpref as Rating Function Using r+pref , ε1 :=
1

1000 , ε2 :=
1

100000

Table 8.1: Parity Computer: Comparison of two Heuristic Functions.

N partition |table| check

3 57 51 404

4 75 117 1·097

5 127 139 1·726

6 516 205 2·929

7 247 271 4·364

8 342 469 8·184

Table 8.2: r+pref with |A| ≤ 2

An intuitively good choice for this hierarchi-
cal partition is grouping together bottom up.
Detecting this algorithmically is subtle. E.g.,
the difference between {Join0, Join00} and
{Client000, Join00} is only minor, since both
pairs cover exactly two variables. An in-
cautious technique easily runs into errands,
as to be seen in Figure 8.10. Using rpref
as rating function in the algorithm par-
tition incrementally leads to uncomfortably
deep hierarchies.

8.4. Experimental Results 167

The more sophisticated rating function r+pref performs far better, as seen in
Figure 8.11. The parameters ε1 and ε2 were calibrated to ε1 := 1/1000 and
ε2 := 1/100000, giving shallow structures a smaller bonus than those touching only
few variables.

The deep hierarchical structure obtained by using rpref lead to excessive number
of explored states, whereas with r+pref the growth of the explored state space with
increasing N is only moderate. This gap is also reflected by the significantly higher
cost values. Table 8.1 shows the run-time data in detail for unrestricted candidate
size, Table 8.2 restricts to candidates of size 2. With “partition” we denote the
preprocessing time used by partition incrementally and “check” corresponds to the
run-time of the model checking algorithm. The number of explored states is recorded
under “|table|”, Mocha keeps the states in a hash table. Note that the property
we check does not hold, thus the model checking algorithm is able to abort without
exploring all reachable states.

In the left and middle table, the time consumed for computing the hierarchical
partition exceeds the model checking time for bigger examples. This is because we
chose not to restrict the candidate size here, which yields a number of candidates
increasing exponentially inN . The obtained hierarchical partitions right in Table 8.1
and in Table 8.2 are identical—due to the tree structure, the best rated candidate
here is always of size two.

In fact, for the shape of our rating functions and for tree-shaped graphs, the
best rated candidate is always of size two, since we severely punish increase in size.
E.g., for rpref , assume a candidate A of size n > 2. There are n − 1 connections
of multiplicity ≤ m for some m. Then the best sub-candidate of A with size two
has rating m/4, while rpref (A) ≤ (n − 1) ·m/n2, and m/4 − (n − 1) ·m/n2 > 0 ⇔
mn2 − 4m(n− 1) > 0 ⇔ (n− 2)2 > 0, thus rpref (A) < m/4. The additive terms in
r+pref give the candidate of size two always a equal or higher bonus than to A.

8.4.2 Leader Election in a Ring

We consider a leader election protocol as a second sample problem. The modules are
arranged in a ring topology, where each buffered channel is modeled by a separate
module. The modules use a standard leader election protocol to elect the one with
the highest (unique) id number: every cell proceeds by sending the highest id number
it has seen so far, starting with its own.

If a cell receives its own id number, it declares itself to be the leader (see [Lyn96]
for an exhaustive treatment of this problem). Figure 8.12 shows how a ring with 3
cells is partitioned incrementally with application of rating function r+pref . The
checked property is a valid invariant: at no time there is more than one process
denoted leader (a safety property).

The gap in time performance between unstructured and clustered system was
not extreme, but noticeable (tables in Figure 8.12). Unfortunately, we are not able
to perform checks with larger rings, since the modeling of the links as finite state
machines turns out to be very consumptive with respect to the state space.

168 Chapter 8. Hierarchical Partitioning

send0
ack0

send1
ack1

send2
ack2

inp0
req0

inp1
req1

inp2
req2

Cell0

Cell1 Cell2Link12

Link20Link01
direction

of message−passing size

∣∣∣∣
hash
table

∣∣∣∣
model

checking

2 563 6·270

3 70·797 1·327·756

Unpartitioned

send0
ack0

send1
ack1

send2
ack2

inp0
req0

inp1
req1

inp2
req2

Cell0

Cell1 Cell2Link12

Link20Link01

size partition

∣∣∣∣
hash
table

∣∣∣∣
model

checking

2 217 563 4·615

3 279 61·455 661·275

Hierarchically partitioned via r+
pref

Figure 8.12: Leader Election Protocol With 2 and 3 Cells.

8.4.3 Opinion Poll Protocol

The third sample problem is meant to demonstrate the behavior of our heuristic in
a setting, where there is no obviously preferable choice.

Consider a poll for a public opinion. There is a line of N pollers Pi and two
non-connected lines of citizen Ai and Bi, plus two special citizen C and D. Poller
P1 starts raising an issue with a Yes/No question. Let us assume that the way one
asks influences the answer. Poller P1 starts of with an opinion he got from a random
source (called Master). Poller Pi+1 is influenced by Pi. The citizen are influenced
by one other citizen and the poller who interviews them. For instance, Ai+1 is
influenced by Ai’s and Pi’s opinions, and A1 is influenced by a random source NA

and P1. Figure 8.13 illustrates this for the cases N = 1 and N = 2, where the
communication pattern is indicated by arrows,

For N = 1, 2, 3, 4 we considered three invariants: (i) a false property that is easy
to falsify, (ii) a false property that requires a special scenario (called bad property in
the following), and (iii) a true property. The experiments compare plain enumerative
model checking and application of the “Next” heuristic, where the preprocessing
follows one of the following strategies. a. 2-merge: Group any pair with a connection
without further preference, i.e., use sig (〈〈.〉〉) as rating function and consider only

8.4. Experimental Results 169

P1

C D

A1 B1

NBNA Master

NBNA

P1

A1

P2

C D

A2 B2

Master

B1

Figure 8.13: Opinion Poll Communication Pattern for N = 1 and N = 2.

P1

C D

B1

NBNA

A1

Master

NBNA

P1

A1

P2

C D

A2 B2

B1

Master

NBNA

A1

P3

P2

B2

Master

A2

B1

P1

A3

C D

B3

B3

P1

P2

P3

A2

A4

NB
NA

B1A1

B2

A3

B4

P4

C D

Master

N = 1 N = 2 N = 3 N = 4

Figure 8.14: Opinion Poll: Hierarchically Partitioned With Rating Function r+pref .

candidates of size 2, b. pref : Partition incrementally according to rating function
rpref , and c. pref+: Partition incrementally according to rating function r+pref . For
the latter, we included the results of the preprocessing in Figure 8.14. It is interesting
to note that sometimes triples were preferred to pairs.

The quantitative comparison is listed in Table 8.3. For the false properties (i) and
(ii) the enumerative check is up to five times slower , if sophisticated heuristics are
applied. Apparently it is more tedious to reach a counter-example scenario here, if
more structure is given. For the true property (iii), the enumerative check speeds up
by a third, when the “Next” heuristic is applied. For larger N the more sophisticated
clustering techniques pref and pref+ perform slightly better than 2-merge.

170 Chapter 8. Hierarchical Partitioning

(i) false Judgment: System = (result = DontKnow)

N\Method plain 2-merge pref pref+

1 742
2 (partition)

854 (check)
280 (partition)
754 (check)

274 (partition)
861 (check)

2 3·713
32 (partition)

4·313 (check)
1·808 (partition)
6·862 (check)

1·886 (partition)
6·850 (check)

3 32·181
7 (partition)

26·330 (check)
1·790 (partition)

87·708 (check)
2·047 (partition)
88·879 (check)

4 345·071
22 (partition)

435·529 (check)
5·256 (partition)

1·390·739 (check)
4·828 (partition)

1·351·527 (check)

(ii) bad Judgment: System = NoNegativeResult

N\Method plain 2-merge pref pref+

1 1·113
2 (partition)

916 (check)
238 (partition)
766 (check)

203 (partition)
886 (check)

2 4·846
5 (partition)

3·930 (check)
1·625 (partition)
7·130 (check)

1·667 (partition)
6·561 (check)

3 32·580
7 (partition)

29·324 (check)
1·788 (partition)

87·827 (check)
1·920 (partition)
73·350 (check)

4 385·951
20 (partition)

375·977 (check)
5·476 (partition)

1·665·765 (check)
6·458 (partition)

1·306·961 (check)

(iii) true Judgment: System = ~((result = DontKnow) & (result = Yes))

N\Met. plain 2-merge pref pref+

1 30·565
2 (partition)

23·689 (check)
290 (partition)

24·369 (check)
292 (partition)

24·423 (check)

2 610·131
5 (partition)

454·089 (check)
1·787 (partition)

482·600 (check)
2·148 (partition)

482·214 (check)

3 8·488·532
17 (partition)

6·392·536 (check)
2·301 (partition)

5·920·255 (check)
2·357 (partition)

5·865·170 (check)

4 93·557·192
23 (partition)

60·934·073 (check)
5·733 (partition)

57·762·294 (check)
5·068 (partition)

57·165·981 (check)

Table 8.3: Opinion Poll Protocol: Run-Time Comparison of Three Rating Functions.

8.5 Reflection: Hierarchical Partitioning

We developed a notion of hierarchical partitions and introduced a method to com-
pare different structures by means of a cost function. This is applicable, whenever
the relationship of entities can be adequately described via hyperedges. For the pre-
sented cost function, the problem of determining an optimal hierarchical partition
is NP-complete.

We presented a scalable greedy method to compute approximately good hierar-
chical partitions based on a heuristic rating function. We argued that—in order to
achieve a good result—this function should be based on four criteria: number of cov-
ered hyperedges, size, number of occurring hyperedges, and structural depth. This is
corroborated by qualitative and quantitative data. We implemented our algorithm
in an experimental version of the Mocha model checking tool and measured its
performance on small and medium sized examples.

It should be noted that our proposed method gives no guarantee on how the
obtained result compares to an optimal solution. Since we apply a variation of

8.5. Reflection: Hierarchical Partitioning 171

local search, it is to be expected that our algorithm can get caught in local optima.
Moreover, optimality in the sense of least cost does not necessarily imply minimal
time- or space-consumption when running a model checking algorithm. In general,
we cannot expect to express such subtle behavioral properties of a system via a
simple function, i.e., a function that is fast to evaluate.

Though our case studies suggest that in the rating function both touch and depth
of the candidates should be taken into account, it remains open, how this should be
reflected. The values for the parameters ε1 and ε2 in (8.6) were chosen according to
fit the parity computer example. It would be desirable to investigate the impact of
parameter changes in general, but we seem to lack apt mathematical means to do
so.

Related problems. Hierarchical structures find a wide range of application in de-
sign, description and physical organization of both software and hardware. In par-
ticular, the decomposition of large circuits in VLSI layout turns out to be a cru-
cial problem and has received a respectable amount of attention [She95]. Here the
partitions are typically shallow (i.e., of depth two) and mainly motivated by size
constraints that single components have to meet. Optimality is typically described
as the least number of components with as few as possibly connections.

Similar structures, called classification trees (e.g. [GRD91]), are used as expressive
decision trees over large sets of data. The internal nodes are labeled by distinguishing
criteria and all leaf nodes are distinguishable. Finding expressive classification trees
is computationally hard.

Though various advanced techniques have been developed for these problems, to
the best of our knowledge none of them is applicable in the considered case. In our
setting, every tree-indexing is a feasible solution, there is no constraint satisfaction
component and there might well be two leaves that are alike.

Open problems. We noted that finding an optimal solution with respect to our
cost function is NP-hard, but this does not preclude the existence of a polynomial
approximation scheme. Also, it remains unknown, how the computational complex-
ity compares with respect to other cost functions, like depth cost(T) := depth(T) or
cost(T) :=

∑
e |leaves(Te)|. It is conjectured that the tree-indexing problem remains

NP-complete in both cases.

Our proposed method is not limited to Mocha, but can be applied in other
settings where connected entities have to be structured or re-structured. The pa-
rameters can be adjusted accordingly. An interesting means to make use of the
obtained partitions could be to construct property preserving abstractions based on
this particular hierarchy.

In our considered application, the difficulty of the model checking problem relies
on the size of the state space, which is typically exponential in the number of modules
and—more often than not—turns out to be the bottleneck. Though our automation

172 Chapter 8. Hierarchical Partitioning

seems to cater well for the “Next” heuristic in order to overcome this, comparison
with other approaches remain to be made.

The author has considered applying this technique in a timed setting, i.e., where
the model contains a real-time component. timed version of the “Next” heuristic.
The bricks sorter model from Chapter 6 served here as a motivating example. These
attempts, however, remained fruitless—it is the author’s (philosophical) conclusion
that you just cannot hide time.

Chapter 9

Model Checking Hierarchical
Timed Automata

I took a course in speed reading and was able to read “War and Peace” in twenty
minutes. It’s about Russia.

— Woody Allen

In this Chapter we address the algorithmic verification of the hierarchical timed
automata (HTA) model from Chapter 3. Our claim is that presence of the
hierarchies does merely complicate the verification part, but not hinder it.
In particular we consider the specification language of Uppaal suitable for
specifying properties.

The foundation for establishing properties of HTAs is the trace-based formal
semantics. We do not have a model checking engine for HTAs. Instead we
flatten a HTA model to a Uppaal model and make use of the well-engineered
implementation of that tool. This translation is complicated mainly by the
implicit synchronization on exit. We give first a high-level description and
subsequently elaborate to the relevant details. Based on this we sketch a proof
for the correspondence of the semantics given to hierarchical and flattened
model.

The flattening procedure has been implemented in Java and translates an
XML file format of HTAs to Uppaal input files (which are also XML). As a
case study we use the model of a cardiac pacemaker, known as a standard UML
design example (e.g., [Dou99a]). We model check a safety and a liveness prop-
erty; the run-times assert that this example is well in the scope of algorithmic
treatment.

173

174 Chapter 9. Model Checking Hierarchical Timed Automata

9.1 Overview on the Flattening Procedure

Flattening of statechart-like languages is complicated mainly by the presence of tran-
sitions that result in a cascade of entries and exits. In particular the synchronization
on exit gives rise to complex auxiliary constructs.

In this Section we give an overview description of our flattening procedure. It is
subsequently elaborated in Section 9.2.

Flattening a hierarchical timed automaton. On the topmost level of an HTA
we find a parallel composition of superstates, conceptually under an implicit root.
Each can be of type AND or XOR and can itself contain superstates. The complete
collection of superstates is called the instantiation tree.1 At any point in time the
behavior of a HTA depends on the sub-tree of this instantiation tree that is currently
active.

Every superstate S in the instantiation tree is translated to one Uppaal process
Ŝ. All those processes are put in parallel. An auxiliary location in Ŝ is added for
the configurations where S is not active (i.e., is idle). The translation proceeds in
three main phases.

I. Collection of instantiations: The instantiation tree is traversed and for every
superstate S the skeleton of a (flat) process Ŝ is constructed. This contains
basic locations, transitions, and the auxiliary initial location Ŝ IDLE. Entries
to S are translated to guarded transitions from Ŝ IDLE.

II. Computation of global joins: Transitions originating from superstates can re-
quire a cascade of substate exits, called global join. All configurations that
can synchronize to such a global join are computed. This yields a guard con-
dition that evaluates to true if an only if one such cascade can be taken to
completion.

III. Post-processing channel communication: If a transition in the HTA starts at a
superstate S and carries a synchronization, it cannot synchronize with a transi-
tion inside S. Since the sub-state/superstate relation is lost in the translation,
we resolve this conflict explicitly by duplicating channels and transitions.

Correspondence of hierarchical and flattened model. A configuration in the HTA
modelM corresponds to one configuration in the flattened version M̂ . All other con-
figurations of M̂ are either intermediate to this or unreachable. This correspondence
allows us to associate every trace of M with one in M̂ .

This association dictates the property language for hierarchical timed automata.
We sketch this only conceptually. Of main interest are the classes of properties
that can be model checked with Uppaal, see Section 2.3. Consequently, the syntax
of properties for hierarchical timed automata is like in Figure 2.3. The difference

1In Section 3.1 this corresponds to η.

9.2. Flattening in More Detail 175

is that the local properties are required to identify (super)locations, variables, and
clocks uniquely. It is necessary to trace back every identifier to the point in the
instantiation tree where it is declared. Note that scoping rules allow to override
a declarations of x in an ancestor superstate in the instantiation tree. Thus the
identifier x can be associated with a different variable, and even a different type,
depending on where it occurs.

These scoping problems can be solved via renaming . All ambiguities introduced
by name duplications can be consistently resolved by prefixing a path of instantia-
tion names to identifiers, starting at the implicit root. For simplicity we omit this
renaming in our description and treat all variables, clocks, and channels as global.
This way for every property ϕ in the HTA we can compute a corresponding prop-
erty ϕ̂ for the flattened model, where the identifiers and names of superstates are
replaced accordingly.

The subsequent Section 9.2 contains a more detailed description of the flattening
procedure. In Section 9.4 we use a cardiac pacemaker as a case study.

9.2 Flattening in More Detail

We now give a detailed description of our flattening procedure. This is organized in
three phases: Translation of superstates and their entries, translation of exits, and
post-processing of channels.

In their syntactic representation via XML files, both the hierarchical timed au-
tomata model and then Uppaal model rely on a template mechanism. Templates
for superstates (processes) are instantiated to create the concrete superstates (pro-
cesses) that constitute the actual model. This works very much like instantiation
of classes to objects, and the motivation is also similar. It should be easy to make
small consistent modifications, e.g., via setting parameters. Parts that are (nearly)
identical should not be described twice but derived as two instantiations of the same
template. The implementation of our flattening procedure therefore in fact trans-
lates a set of HTA templates plus an instantiation at root level to a set of flat timed
automata templates where each is instantiated exactly once.

Conceptually, however, the translation works on instantiation level. If a super-
state template is instantiated twice, the two instantiations are translated separately.
This makes it easier to take the context into account. At template level, e.g., no
parent superstate can be attributed to a template. To construct translations of en-
tries or exits, knowledge about this context is crucial. For simplicity we therefore
describe the translation as if all superstates and processes were primitives.

9.2.1 Translation of Superstates and Entries — Phase I

We sketch now the translation of a superstate S to a process Ŝ, the pseudo-code is
given in Figure 9.1.

For every location l in S, l̂ is created in Ŝ. Additional Ŝ contains the location

176 Chapter 9. Model Checking Hierarchical Timed Automata

Algorithm: PHASE I: instantiateTemplates

input: Stack S of superstates to translate
output: Set P of (flat) timed automata

Set G of global join starting points

P := {Global Kickoff automaton for s ∈ S}
G := ∅
While notempty(S)

S := pop(S)
C := {non-basic locations B in S}

Forall B ∈ C
push([B in S],S)
/? [B in S] inherits all invariants attached to S ?/

create a location B̂ in Ŝ
EB := {set of entries of B in S}

Forall e ∈ EB

create a committed location B̂e in Ŝ
create a transition from B̂e to B̂ in Ŝ
/? this transition carries a synchronization enter B in S via e! ?/

If type(S) = XOR Then

G := G ∪ {B in S}

P := P ∪ {translation Ŝ of superstate S, depending on type(S)}

Figure 9.1: Algorithm for Translation of the Instantiation Tree.

S IDLE, which is the initial location. Every entry of S corresponds to a transition
in Ŝ originating from S IDLE. Some auxiliary constructions are necessary to mimic
the behavior of hierarchical machines adequately. They depend on the type (XOR
or AND) of S.

Translation of XOR superstates. In a hierarchical XOR superstate X, at most
one location is active at a given time. For every substate B of X we introduce
a location B ACTIVE IN X in X̂. Moreover, for every entry e of B we introduce
an auxiliary location in X̂, called X AUX B e. These are declared committed and
are connected to B ACTIVE IN X with a transition that synchronizes on a channel
enter B in X via e. Transitions leading originally to a B-entry e in X are repre-
sented in the translation by leading to X AUX B e and trigger—without interleaving
with other processes—the activation of the substate B.

Exits of substates B are translated similarly by transitions from B ACTIVE IN X.
They give rise to additional complications since leaving an AND substate B is only
possible if all descendants of B can exit. So in fact a chain of exit transitions starting
at B ACTIVE IN X can be necessary, see Section 9.2.2.

If the XOR superstate X is inactivated (exited), this corresponds in the trans-

9.2. Flattening in More Detail 177

c

c c

c c

c

enter A in S via e1?

exit A?

enter Bn in A via en,1
!

A IDLE

enter A in S via em?

enter Bn in A via en,m
!enter B1 in A via e1,m

!

enter B1 in A via e1,1
!

A ACTIVE

Figure 9.2: Translation of Entries and Exits an AND Superstate.

lation X̂ to transitions to X IDLE. This transition carries the synchronization
exit X?. If the superstate X has a default exit, every non-auxiliary location in
X̂ has such a transition to B IDLE.

Translation of AND superstates. An AND superstate A is a parallel composition
of superstates. Either non of them is active or all of them are. In the translation Â
(Figure 9.2), this corresponds to locations A IDLE and A ACTIVE. If A is activated,
this is specific to an entry ei of A. The substates Bj of A are entered one after
another. Which entry is used for each Bj is dependent on ei. Thus for every entry
ei of A there is a separate chain of transitions leading from A IDLE to A ACTIVE. The
choice of entries of Bj is reflected by appropriate signals enter Bj in A via ej,i.
The auxiliary locations in the chain are declared committed, so no time can elapse
before A ACTIVE is reached and interleaving with other processes is blocked.

Kickoff. Since the root of the instantiation tree is implicit, one special process
is needed to trigger the entry of the topmost superstates. This process is called
Global Kickoff and also initializes all variables.

We note that the topmost superstates Si are considered special, since they do not
synchronize on exit. Instead, they can be enabled to become in-active via following a
special exit transition. Once one of these Si becomes inactive, this status can never
be revoked in our hierarchical timed automaton formalism, since there is no machine
that could accommodate a transition to some Si. If a superstate S is intended to be
able to be both inactivated and activated again, it cannot nest at the root level but
must be itself contained in a superstate.

History. History amounts to record the status of an XOR superstate X when it is
exited. Since we assume all variables and clocks to be global, this amounts to storing
the last control location. This can be encoded via an auxiliary integer variable hist
that is updated along each transition in X̂. Each value corresponds exactly to one
location l̂i in X̂. The history entry then has a transition to each location l̂i guarded
by the expression hist== i. If hist has its initial value 0, then then the only guard
evaluating to true leads to the default history location.

The clocks local to superstates with history entry are not frozen on exit but kept

178 Chapter 9. Model Checking Hierarchical Timed Automata

running.2 If local clocks are declared to be forgetful, then they are reset along every
entry. Otherwise they resume with the accumulated value.

For simplicity we do not treat history in our flattening procedure.

Urgent transitions. In the HTA formalism transitions can be declared urgent. The
corresponding concept in the Uppaal model is to declare channels urgent, i.e.,
channels where synchronization has preference over time delay. An urgent transition
t can be encoded by this as follows.

a) If t does not carry synchronization:
Add a dummy synchronization Hurry? on the transition and add one parallel
process HurryDummy that constantly offers synchronization on this channel.

b) If t synchronizes on channel c:
Declare c urgent. If there are situations where two non-urgent transitions
can synchronize on c, then it is necessary to introduce a urgent and non-
urgent copy of c and duplicate all transitions where both urgent and non-urgent
synchronizations are possible.

For simplicity we do not treat urgency in our flattening procedure.

9.2.2 Exit of Superstates via Global Joins — Phase II

The exit of a superstate S is represented in Ŝ by a transition to S IDLE which
carries the synchronization signal exit S?. These exits do not necessarily happen
in isolation, but might happen as part of a cascade of exits from superstates and
non-basic substates. Thus it is necessary

(1) to derive conditions that allow a set of superstates to exit, and
(2) to make sure that always the complete set of exits is performed.

We call the process of performing a legal set of exits a global join.

Example 9.1 (Global Join)
Consider Figure 9.4 (i) with control at (L2,L3). Then the superstates S3, S2, and
S1 have to be left, in order to reach l. The same holds for control situation (L2′,
L3). This cascade of exits is encoded the sequence of in Figure 9.4 (ii). However,
if control is at (L2,L4), then S4 must be left as well, this would correspond to a
different sequence of substate exits than displayed in (ii), i.e., a different global join.

One transition leaving a superstate B can give rise to a number of global joins,
possibly exponential in the depth of hierarchical structure.

For every global join there is exactly one proper transition that does not lead to
an exit. In Example 9.1 this is the transition to l. An auxiliary variable trigger

keeps track of the number of active basic locations that can participate in this join.

2Reachability for automata with stopwatches is undecidable [CL00].

9.2. Flattening in More Detail 179

Algorithm: PHASE II: expandGlobalJoins
input: Set G of global join starting points
output: auxiliary constructions: counters and guarded transitions

JoinTrees := ∅
Forall g ∈ G

collect all trees T of control locations that can synchronize to g;
the leaves of T are sets of basic locations that share transitions to
the same exit e.

/?
These sets are singletons, if e is an ordinary exit
and span over all basic locations in the superstate otherwise

?/

JoinTrees := JoinTrees ∪ {T}

Forall T ∈ JoinTrees

let L̂ := {l̂
∣∣ l is element in a basic location set of T}

declare the counter triggerT

Forall l̂ ∈ L̂

Forall transitions k̂ → l̂

add the assignment triggerT := triggerT + 1 to k̂ → l̂

Forall transitions l̂→ m̂
add the assignment triggerT := triggerT − 1 to l̂→ m̂

let N := number of leaves of T
let ST := superstates S occurring in T

Forall transitions t starting at root(T)

create a chain of transitions, starting with t̂,
corresponding to exiting every S ∈ ST

/? see Figure 9.4 (ii); note the additional guard triggerT==N ?/

Figure 9.3: Pseudo-code for the Encoding of All Global Joins.

S2

S1

[sync] [guard]
[assign]

l

S3

L3

X

L2

L2
′

L4

S4

c

c

c

c

l̂

S1 ACTIVE IN X

[sync]
(trigger == 2) ∧ [guard]

exit S3!

exit S2!

exit S1! [assign]

(i) Part of an XOR Superstate X (ii) Exits in X̂, starting at (L2,L3)

Figure 9.4: Translation of a Global Join That is Rooted at XOR Superstate X.

In a transition from L2 to L2′, for example, the value of trigger does not change.
trigger has to reach the threshold value—here: 2—to enable the global join. It is

180 Chapter 9. Model Checking Hierarchical Timed Automata

Algorithm: PHASE III: postprocessChannels

input: Queue Q over (syncSignal, transition, S)

While notempty(Q)

(syncSignal, transition, S) :=pop(Q)
If ∃ transition t with match(syncSignal) in S:

create a new channel c
replace channel(syncSignal) on transition by c

Forall transitions t with match(syncSignal) outside S
create a copy t′ of t, where channel(syncSignal) is replaced by c
if ∃(s′, t, S′) ∈ Q then push

(
(s′, t′, S′), Q

)

Figure 9.5: Pseudo-code for Post-processing Synchronization Channels.

crucial that the proper transition terminating the global join—here: S1 to l—can be
taken, i.e., that the guard (if any) evaluates to true. Likewise the synchronization
with other transitions (if any) has to be possible at this point in time.

Thus, in the sequence of substate exits in Figure 9.4 (ii), [guard] and [sync] are
attached to the first transition, while [assign] is executed along the last transition.

9.2.3 Post-Processing of Channels — Phase III

Transitions that cause the same location to be exited are in conflict, i.e., they cannot
be executed simultaneously. The only case where two transitions in the HTA model
are taken truly simultaneous (and not interleaved) is the synchronization along chan-
nels. E.g., in Figure 3.1, the a? transition exiting SUB cannot synchronize with the
a! transition in P.

In the flattening the structural relation of ancestor/descendant is lost. Therefor

we have to prevent synchronization between the processes ŜUB and P̂ explicitly.
We achieve that by introducing duplications of channels such that synchronization
is guaranteed to happen between processes that correspond to parallel superstates.
This can make it necessary to also introduce duplications of transitions.

For example, the HTA in Figure 3.1 is flattened such that channel a is replaced
by two copies a parallel P and a parallel MAIN. One can synchronize with superstates
parallel to P and one with superstates parallel to MAIN. The signals a! and a? along
channel a have to be replaced accordingly.

Parts of the flattened model are drawn in Figure 9.6. If a superstate is both
parallel to P and to MAIN, a transition originally carrying a! is replaced by two
transitions, one carrying a parallel P! and one carrying a parallel MAIN!. The pseudo-
code for this post-processing is given in Figure 9.5.

9.3 Semantic Correspondence of HTAs and TAs

Hierarchical and flattened model are related in that with every hierarchical configu-

9.3. Semantic Correspondence of HTAs and TAs 181

MAIN IDLE SUB ACTIVE IN MAIN

cccc

P IDLE lP1 lP2 outside MAIN

enter SUB in MAIN via eSUB!

a parallel MAIN?

exit P!exit Q!exit Q!

enter SUB in MAIN via eSUB!

enter P in SUB via eP ? a parallel P!

exit P?

a parallel P!

a parallel MAIN!

Figure 9.6: Part of the Flattened Model of the HTA in Figure 3.1 After Phase III.

ration we can associate a flat one. We show that every hierarchical trace corresponds
to a projection of a trace in the flattened version. A similar connection holds in the
other direction. It follows that both models are equivalent with respect to the TCTL
properties checkable with Uppaal.

9.3.1 Hierarchical and Flat Configurations

Conceptually we can relate a configuration of a HTA M to a configuration of the
flattened Uppaal model M̂ . The reverse direction is not possible in general; some
configurations of the Uppaal model do not make sense from the HTA point of view,
e.g., if a process corresponding to a substate is active but not the process correspond-
ing to its superstate. Our construction guarantees that those configurations are not
reachable. Other configurations in the Uppaal model are intermediate steps in the
encoding of an exit or entry. We call those configurations of the Uppaal model that
have a counterpart in the hierarchical model stable.

Definition 9.2 (Stable/Unstable Configuration)

Given a HTA M and a corresponding Uppaal model M̂ , where every superstate S
in M corresponds to the process Ŝ in M̂ . A stable configuration of M̂ then is a
configuration (~l, e, ν), where

• No l ∈ ~l is committed, i.e., ∀i. ¬c(li),
• If X is a XOR superstate and for some S X ACTIVE IN S ∈ ~l, then X IDLE 6∈
~l, and

• If A is a AND superstate and for some S A ACTIVE IN Ŝ ∈ ~l, then for every
substate Bi of A: Bi IDLE 6∈ ~l.

182 Chapter 9. Model Checking Hierarchical Timed Automata

Every consistent Uppaal model configuration that is not stable is called unstable.

We can define a relation of configurations of a HTA M to stable configuration of M̂ .

Definition 9.3 (Matching Configuration)
Given a HTA M and a proper configuration c := (ρ, µ, ν, θ) of it. A configuration

s := (~l, e, ν) of M̂ is a matching configuration, in symbols c ∼M s if the following
holds.

(i) ∀S ∈ ρ+(root). BASIC(S) ⇒ Ŝ ∈ ~l,

(ii) ∀S ∈ ρ+(root). XOR(S) ∨AND(S) ⇒ S ACTIVE IN (η−1(S)) ∈ ~l, and

(iii) ∀v ∈ Var(root). µ(v) = e(v)

It is easy to see that the flat configuration in the above definition is necessarily
stable. The relation ∼M ignores history and the values of auxiliary variables. In
general∼M is an injection. By construction of the steps, however, for every reachable
hierarchical configuration c only one flat configuration s is reachable.

9.3.2 Correspondence of Steps

The flattened version M̂ of a HTA M is a refinement in the sense that every step
in M corresponds to a finite sequence of steps in M̂ . If an ordinary transition or
a delay is mimicked this sequence is of length 1. The exit and entry of superstates
require a larger number of steps to be taken in the flattened version.

Delay. A delay step of duration d is possible if no urgent transition is enabled
and all invariants remain true throughout this delay. In phase I, all invariants
of superstates are inherited, i.e., every location in the flattened model carries a
conjunction of the invariants of all ancestor superstates it is derived from. Thus, a
duration step from a HTA configuration c is possible if and only if it is possible in
a corresponding flat s with c ∼M s.

Join. The computation of PreExitSets(e) in Section 3.2 corresponds to the sets of
locations that are computed in expandGlobalJoins. Recall that PreExitSets(e) is
a family of sets of basic locations. The global join can be taken if control is such
that one location in each set is active. These sets are locations in the same XOR
superstate, thus not more than one can be active. For the global join gi the auxiliary
variables (triggeri) reflects the number of locations that are in the sets of gi, i.e.
PreExitSets(e). If this number reaches the threshold |PreExitSets(e)|, the global
join can be taken.

Every such performed global join relies on one proper transition t that does not
lead to an exit. t is necessarily part of a XOR superstate X. The encoding of the
global join is a chain of transitions (like in Figure 9.4 (b)). The first transition carries

9.3. Semantic Correspondence of HTAs and TAs 183

guard and synchronization of t. The subsequent transitions signal the substates Bi
of X to become idle, i.e., the processes B̂i corresponding to these substates take
a transition to Bi IDLE. Since the intermediate locations of the chain are declared
committed, this sequence cannot be disturbed by ordinary transitions or time delays.

If t synchronizes (with a transition parallel to t) this can entail two simultaneous
executions of global joins and, possibly, also entries of substates. Since the transi-
tions are necessarily parallel (or: independent), this does not cause problems. There
might be several legal sequences of transitions that lead to the same next stable
configuration.

Transition. A simple action step that does not exit or enter any superstates corre-
sponds naturally to taking one transition in a (flat) process. In the flattened model,
auxiliary variables (trigger) are updated along this transition. This is merely
housekeeping and does not enable or block transitions. The invariants of locations
are inherited. Thus the transition part of the HTA is directly mimicked in the
translation.

The analogous argument holds for the synchronization of two transitions along
a channel. The renaming in phase III guarantees that synchronizations are only
possible between transitions that correspond to parallel transitions in the HTA.

Fork. Entries of XOR superstates activate one location that can be basic or a su-
perstate. Entries of AND superstates activate all substates; those are necessarily
superstates again. Thus every entry can result in the activation of a set of super-
states. This set is given by the (static) structure.

In the flattened version this set of superstates is activated by adding auxiliary
locations and synchronizing via enter B in S via e!. There are no guards allowed
and the auxiliary locations are declared committed. Thus this sequence of synchro-
nizations takes place without interleaving with ordinary transitions and without
time delay.

It is important that all parts, once started, can execute to completion. Thus we can
relate one step in a HTA M to a sequence of steps in M̂ , where only the first and
the last configurations are stable.

Lemma 9.4 (Step Encoding)
For a HTAM there exist a step between two configurations (ρ, µ, ν, θ) and (ρ′, µ′, ν ′, θ′)
according to rules action and sync (see Section 3.2) if and only if for the Uppaal

model M̂ there exists a corresponding sequence

(~l, e, ν)
α

=⇒ (~l1, e1, ν1)
τ

=⇒ · · ·
τ

=⇒ (~lk, ek, νk)
τ

=⇒ (~l′, e′, ν ′)

where (ρ, µ, ν, θ) ∼M (~l, e, ν), (ρ′, µ′, ν ′, θ′) ∼M (~l′, e′, ν ′), all (~li, ei, νi) are unstable
configurations, α ∈ {a, τ} and the remaining synchronizations τ are along channels
exit B and enter B in S via e.

184 Chapter 9. Model Checking Hierarchical Timed Automata

Other modeling elements. We do not address history or urgency in our argumen-
tation. This is for the sake of clarity; they are not causing complications.

History amounts to the assignment of special variables that direct control on re-
entry. In the flattened version this yields a mutual exclusive choice of the transitions
from the history entry to exactly one location (which can be in fact a superstate;
then either the history entry or default entry is used). Along this transitions only
those clocks declared as forgetful are reset to 0 and all others remain untouched.

Urgency can be completely replaced by Uppaal’s mechanism for synchronization
on urgent channels as explained earlier.

9.3.3 Correspondence of Traces

After asserting that the step relation of a HTA M is indeed refined to the step
relation of the flattened M̂ , we can relate the sets of traces. The key observation is
that for every timed trace in M there exits at least one corresponding timed traces
for M̂ . For every timed trace for M̂ there exists exactly one timed trace for M .

The trace relation is not a bijection, since in M̂ interleavings between the in-
termediate transitions are possible. This is only the case for synchronized action
steps, which are guaranteed to connect only independent transitions. Thus all such
interleavings lead to the same stable configuration.

Proposition 9.5 (Correspondence of Hierarchical and Flattened Model)

Given a HTAM and the flattened Uppaal model M̂ of it. For every timed trace σ =
{(ρ, µ, ν, θ)i}i≥0 of M there exists a corresponding timed trace σ̂ = {(~l, e, ν)j}j≥0
of M̂ such that

∀i. ∃k, k′, k < k′. (ρ, µ, ν, θ)i ∼
M (~l, e, ν)k ∧

(ρ, µ, ν, θ)i+1 ∼
M (~l, e, ν)k′ ∧

∀k < j < k′. (~l, e, ν)j is unstable.

Conversely, for every timed trace σ̂ = {(~l, e, ν)j}j≥0 of M̂ there exists a corre-
sponding timed trace σ = {(ρ, µ, ν, θ)i}i≥0 of M such that

∀k, k′, k < k′. if (~l, e, ν)k and (~l, e, ν)k′ are stable

and all (~l, e, ν)j with k < j < k′ are unstable, then

∃i. (ρ, µ, ν, θ)i ∼
M (~l, e, ν)k ∧

(ρ, µ, ν, θ)i+1 ∼
M (~l, e, ν)k′ .

Observe also that by construction the entries and exits cannot get “stuck” in the
middle of the transition. Thus M̂ does not yield maximally extended finite traces
that terminate in unstable configurations. This entails that all trace properties that
Uppaal can establish for M̂ , also hold for M .

Corollary 9.6 (Flattening Sound and Complete)
A timed property ϕ from the TCTL fragment in Section 2.3 holds in an hierarchical
model M if and only if the the corresponding property ϕ̂ holds in M̂ .

9.4. Model Checking a Cardiac Pacemaker 185

Proof: (Sketch)
By Proposition 9.5 the sets of traces match modulo the unstable configurations
contained in the traces of M̂ . Local properties of M cannot refer to the auxiliary
variables in the unstable configurations and by our well-formedness conditions the
values of variables in Var(root) change at most once along a sequence of unstable
configurations.

For the TCTL fragment in Section 2.3 it suffices to quantify over traces. The
hierarchical and the flat traces are only distinguishable by the names of identifiers.
Those we assume to be translated properly in ϕ̂.

¤

9.4 Model Checking a Cardiac Pacemaker

We exemplify our flattening procedure on the model of a cardiac pacemaker. The
flattened version is model checked with Uppaal for a safety and a liveness property.
The code of the procedure and the example are available online.3

The pacemaker is put in parallel with a model of a human heart and a program-
mer. We translate the hierarchical timed automaton model of this composition to
an equivalent (flat) Uppaal timed automata model and explain the obtained au-
tomata in detail. Then we report on run-time data of the formal verification of this
translation with respect to safety and response properties.

9.4.1 The Hierarchical Timed Automaton Model

The hierarchical model is a parallel composition of three XOR superstates: the
human heart, the cardiac pacemaker itself, and a programmer setting up the pace-
maker.

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Figure 9.7: Model of a Human Heart That Might Require Pacing.

3http://www.brics.dk/%7Eomoeller/hta/vanilla-1/

http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/

186 Chapter 9. Model Checking Hierarchical Timed Automata

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToInhibited? ToTriggered?

TriggeredInhibited
inIdle

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

ToIdle?

Self Triggered

Idle

Self Inhibited

Off

On

Figure 9.8: Model of the Pacemaker. Initially Self Inhibited is Entered.

Heart model. The human heartbeat is in fact a complex sequence of chamber
contractions, where two atrial and two ventricular chambers collaborate to establish
blood circulation. We use a simplified model of a human heart that might require
pacing (Figure 9.7). We consider only two chambers, namely the (left) atrial and
ventricular ones. A healthy heart contracts those in a steady rhythm. We mimic
this by the time delays DELAY AFTER V and DELAY AFTER A and the local clock t.
In our example we only monitor the ventricular chamber. The part after entry V

synchronizes on VSense, in case that anybody is listening (indicated by listening

== 1).

After the contraction of the ventricular chamber, our heart model might non-
deterministically stop beating on own account. If it does so for too long, the critical
state FLATLINE is reached.

The pacemaker can send an impulse either to the atrial or ventricular chamber,
i.e., synchronize on channels APace or VPace. The particular heart chamber then
is scheduled for contraction in the very next moment, regardless on when these
signals occur. This is modeled by using the default exit and re-entering at one of
the leftmost locations.

We use the local clock t to model this rhythm. Since in our example we only mon-

9.4. Model Checking a Cardiac Pacemaker 187

itor the ventricular chamber, this one synchronizes on VSense, in case that anybody
is listening (indicated by listening == 1).After the contraction of the ventricular
chamber, our model might non-deterministically stop beating on own account. If it
does so for too long, the critical state FLATLINE is reached.A pacemaker can send
a signal either to the atrial or ventricular chamber, i.e., synchronize on channels
APace or VPace. The particular heart chamber then is scheduled for contraction
in the very next moment, no matter when these signals occur. This is modeled by
using the default exit and re-entering at one of the leftmost locations.

Pacemaker model. The main component of the pacemaker is an XOR superstate
with the two sub-states Off and On. If the pacemaker is on, it can in the different
modes Idle, AAI, AAT, VVI, VVT, and AVI. The first letter indicates, to which
chamber of the heart an electrical pacing pulse is sent (articular or ventricular).
The second letter indicates, which chamber of the heart is monitored (articular or
ventricular). In the Self Inhibited (I) modes, a naturally occurring heartbeat blocks
a pulse from being sent. In the Self Triggered (T) modes, a pacing pulse will always
occur, triggered either by a timeout or by the heart contraction itself.

For simplicity we restrict to the operation modes Idle, VVT, VVI, and AVI. Of
particular interest is the AVI mode, which is described as an AND superstate with
two parallel substates. In our example only the ventricular chamber is observed, but
a pace signal may be sent either chamber.

Programmer model. A medical person—here called the programmer—is responsi-
ble for switching the pacemaker on/off and for selecting the operation mode. This the
programmer does via the signals commandedOn!, commandedOff!, toIdle!, toVVI!,
toVVT!, and toAVI!. We do not make assumptions, on how or in which order she
issues the signals. However, we require a time delay of at least DELAY_AFTER_-
MODESWITCH after each signal. If one of the signals commandedOff! or toIdle!

was issued this is recorded in the binary variable wasSwitchedOff. Note that we
equipped the pacemaker with default exits, thus it can always synchronize with these
signals.

The programmer is modeled by a XOR superstate with two locations. In the
initial location, Modeswitch, any signal can be issued while entering the second
location. The second location is left after exactly DELAY_AFTER_MODESWITCH time
units. We include two additional locations, Random and Idle, to encode alternative
behavior of the programmer. They are not relevant here.

9.4.2 Translation to Uppaal Timed Automata

The three superstates Heart, Pacemaker, and Programmer are flattened to a network
of Uppaal processes. In particular this translation yields

• two processes for the Heart: a top-level, where exit and re-entry happens and
one for the substate where the heart is beating (Figure 9.9),

188 Chapter 9. Model Checking Hierarchical Timed Automata

Detail

L1

L2

IDLE

L15

L16

HrtDtlVCtrctENTRYtrhrtsm4Dtl5!

HrtDtlACtrctENTRYtrhrtsm4Dtl5!

HrtACtrctENTRYtrhrtsm4?

HEART_TIME := 0

HrtVCtrctENTRYtrhrtsm4?
HEART_TIME := 0

xtSglNR4?

triggerVar2 == 1
APace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

triggerVar2 == 1
VPace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

VContraction
HEART_TIME <= 0

AContraction
HEART_TIME <= 0

AfterVContraction
HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

AfterAContraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped
HEART_TIME <= HEART_ALLOWED_STOP_TIME

Flatline

IDLE

HrtDtlACtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HrtDtlVCtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1
VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0

HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME
HEART_TIME := 0

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

Figure 9.9: Flattened Version of the Heart Model.

• seven processes for the Pacemaker, put together as

– one process for the top-level where the pacemaker is either On or Off
(Figure 9.10),

– one process for superstate where the pacemaker is on (Figure 9.11),
– one process for the VVI operation mode (Figure 9.12),
– one process for the VVT operation mode (Figure 9.13),
– three processes for the AVI operation mode, one for the AND super-

state (Figure 9.14) and two for the substates listening to the ventricular
chamber (Figure 9.15) and pacing the articular chamber (Figure 9.16),

• one process for the Programmer (Figure 9.17), and
• one process to start the three parts (Figure 9.18).

Translation of heart (Figure 9.9). The XOR superstate X and the XOR substate
S are translated to the two processes. The translation of X (upper part of Figure) is
responsible for selecting the entry VContraction or AContraction. The translation
of S (lower part of Figure) encodes the behavior. Note that from every location
there is a transition to IDLE; this corresponds to the default exit of S.

9.4. Model Checking a Cardiac Pacemaker 189

Off

subComponent

L3

L4

L5

L6

L7

IDLE

L17

L18

L19

L20

L21

L22 L23

L24L25

L26L27

L28L29

L30L31

L32 L33

L34L35

L36L37

L38L39

L40L41

L42 L43 L44 L45

L46
L47L48

L49

L50L51L52L53

L54L55L56L57

L58L59L60L61

PcOdfltENTRYtrpcmkr2sbCmpt6!

PcOIdlENTRYtrpcmkr2sbCmpt6!

PcOVVIENTRYtrpcmkr2sbCmpt6!
PcOVVTENTRYtrpcmkr2sbCmpt6!

PcOAVIENTRYtrpcmkr2sbCmpt6!

PcOffENTRYtrpcmkr2?

PcIdlENTRYtrpcmkr2?

PcVVTENTRYtrpcmkr2?

VVT_TIME := 0

PcVVIENTRYtrpcmkr2?

VVI_TIME := 0

PcAVIENTRYtrpcmkr2?

AVI_A_TIME := 0, AVI_V_TIME := 0

commandedOn?

VVI_TIME := 0

triggerVar3 == 1

commandedOff?
V_listening := 0, wasSwitchedOff := 1xtSglNR6!

triggerVar3 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1

xtSglNR6!

triggerVar3 == 1

toInhibited?

V_listening := 0, VVI_TIME := 0xtSglNR6!
triggerVar3 == 1 toTriggered?

V_listening := 0, VVT_TIME := 0

xtSglNR6!

triggerVar3 == 1

toAVI?

V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR6!

triggerVar4 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!
xtSglNR6!

triggerVar4 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toAVI?
V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR7!
xtSglNR6!

triggerVar5 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0
xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar7 == 2
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2
toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

Figure 9.10: Translation of the Topmost XOR Superstate of the Pacemaker.

Flattened pacemaker (Figures 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16). The
most complicated process is the translation of the topmost XOR superstate. The
basic locations are IDLE (far left), subComponent (center), and Off (far right). The
pacemaker is on, when it control resides in subComponent and off, when the control
is at Off.

The committed locations serve to encode the entry of the single substate and the
global joins originating from it. For example, the four locations on the left L4, L5,
L6, and L7 correspond to entering the modes Idle, VVIMode, VVTMode, and AVIMode.
Control of the pacemaker can reside in the locations Idle, VVIMode, VVTMode, and
AVIMode. There are no direct transitions between these modes, the superstate has
to be exited to change in between them.

The AVI mode is modeled by a AND superstate with two parallel XOR substates.
In the translation this is reflected by a process with two non-committed locations
IDLE and ACTIVE (Figure 9.14) that synchronizes with two other processes AVI-A

190 Chapter 9. Model Checking Hierarchical Timed Automata

Idle

VVIModeL8

VVTModeL9

AVIModeL10

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7!

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9!

PcOAVIENTRYtrpcmkr2sbCmpt6?
AVI_A_TIME := 0, AVI_V_TIME := 0

PcOVVTENTRYtrpcmkr2sbCmpt6?
VVT_TIME := 0

PcOVVIENTRYtrpcmkr2sbCmpt6?
VVI_TIME := 0

PcOIdlENTRYtrpcmkr2sbCmpt6?
triggerVar3 := triggerVar3 + 1

PcOdfltENTRYtrpcmkr2sbCmpt6?
VVI_TIME := 0

xtSglNR6?
triggerVar3 := triggerVar3 - 1

xtSglNR6?

xtSglNR6?

xtSglNR6?

Figure 9.11: Translation of the XOR Superstate On.

Refractory

VVI_TIME <= REFRACTORY_TIME WaitingforSense
VVI_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVI_TIME <= 0

Pacing
VVI_TIME <= 0

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7?
triggerVar4 := triggerVar4 + 1

VVI_TIME == REFRACTORY_TIME
VVI_TIME := 0, V_listening := 1

VentricularChamberSense?
VVI_TIME := 0

VVI_TIME == SENSE_TIMEOUT
VVI_TIME := 0, V_listening := 0

VPace!
VVI_TIME := 0

xtSglNR7?
triggerVar4 := triggerVar4 - 1 xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?
triggerVar4 := triggerVar4 - 1

xtSglNR7?
triggerVar4 := triggerVar4 - 1

Figure 9.12: Translation of the XOR Superstate Corresponding to the VVI Mode.

and AVI-V (Figures 9.16,9.15).

Translation of programmer (Figure 9.17). Since the programmer is a XOR su-
perstate with only basic locations, the translation is very similar. It contains the
additional location IDLE.

Kickoff (Figure 9.18). This process starts the three superstates Heart, Pacemaker,
and Programmer. In the only process of the Uppaal model where in the initial
configuration a transition is enabled.

Increase in Model Size

Both data formats, HTA and Uppaal timed automata, are described in terms of
XML grammars. The flattening of the HTA yields an moderate increase in terms of
model size. Table 9.1 lists this data in detail. A large number of committed locations

9.4. Model Checking a Cardiac Pacemaker 191

Refractory

VVT_TIME <= REFRACTORY_TIME WaitingforSense
VVT_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVT_TIME <= 0

Pacing
VVT_TIME <= 0

IDLE

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8?
triggerVar5 := triggerVar5 + 1

VVT_TIME == REFRACTORY_TIME
VVT_TIME := 0, V_listening := 1

VentricularChamberSense?

VVT_TIME := 0,V_listening := 0
VVT_TIME == SENSE_TIMEOUT

VVT_TIME := 0, V_listening := 0

VPace!
VVT_TIME := 0

xtSglNR8?
triggerVar5 := triggerVar5 - 1 xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?
triggerVar5 := triggerVar5 - 1

xtSglNR8?
triggerVar5 := triggerVar5 - 1

Figure 9.13: Translation of the XOR Superstate Corresponding to the VVT Mode.

IDLE ACTIVE

pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork1
pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork2

PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11!

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9?

xtSglNR9?

Figure 9.14: Translation of the AND Superstate Corresponding to the AVI Mode.

HTA model Uppaal model

XML tags 564 1191

proper control locations 35 45

pseudo-states / committed locations 33 63

transitions 47 177

variables and constants 33 72

formal clocks 6 6

Table 9.1: Size of the HTA Model and the Corresponding Uppaal Model.

were introduced to encode entry and global joins. However, these forks and joins are
triggering a deterministic sequence of actions and thus do not significantly increase
the state space. A similar observation holds for the introduced auxiliary variables:

Refractory

Waiting

WaitingAU
AVI_V_TIME <= 0

APacing

IDLE
PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11?
triggerVar7 := triggerVar7 + 1

AVI_Refractory_Done?

V_listening := 1

VentricularChamberSense?
AVI_V_TIME := 0, V_listening := 0

A_LISTENING_TO_V == 0
V_listening := 1

AVI_Sense_from_V!
V_listening := 1

AVI_APace?
V_listening := 0

AVI_APace_Done?
xtSglNR11?

triggerVar7 := triggerVar7 - 1
xtSglNR11?
triggerVar7 := triggerVar7 - 1

xtSglNR11?
triggerVar7 := triggerVar7 - 1

xtSglNR11?
triggerVar7 := triggerVar7 - 1

Figure 9.15: Translation of the XOR Superstate AVI-V.

192 Chapter 9. Model Checking Hierarchical Timed Automata

Refractory

AVI_A_TIME <= REFRACTORY_TIME Waiting
AVI_A_TIME <= SENSE_TIMEOUT

APacing
AVI_A_TIME <= 0

APacingAU
AVI_A_TIME <= 0

IDLE

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10?
triggerVar7 := triggerVar7 + 1

AVI_A_TIME == REFRACTORY_TIME
AVI_Refractory_Done!
A_LISTENING_TO_V := 1, AVI_A_TIME := 0

AVI_Sense_from_V?
AVI_A_TIME := 0

AVI_A_TIME == SENSE_TIMEOUT
APace!

A_LISTENING_TO_V := 0, AVI_A_TIME := 0

AVI_APace!
AVI_A_TIME := 0

AVI_APace_Done!

AVI_A_TIME := 0

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

Figure 9.16: Translation of the XOR Superstate AVI-A.

Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?
triggerVar1 := triggerVar1 + 1

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

PROGRAMMER_TIME == MODE_SWITCH_DELAY
triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1

Figure 9.17: Translation of the XOR Superstate Programmer.

The values of variables triggering global joins are completely determined by the
current control state. The auxiliary channels introduced to switch components from
IDLE to ACTIVE and vice versa does not increase the complexity significantly.

9.4.3 Model Checking the Uppaal Model

The translation of the HTA model can serve as input to the Uppaal tool. The
system is not deadlock free. When the programmer switches off the pacemaker and
the heart stops beating, a configuration is reached where unbounded delay is possible.
In one variation, the programmer was explicitly disallowed to exit. In a second
variation, the pacemaker could not be switched off. In both variations, deadlock
freedom was established via a run of the model checking engine on a true invariant
with switch settings -Aa (convex hull approximation and active clock reduction

9.4. Model Checking a Cardiac Pacemaker 193

start

L11 L12

L13

PcAVIENTRYtrpcmkr2!

PrgrmmrMdswtchENTRYtrprgrmmrsm3!

HrtACtrctENTRYtrhrtsm4!

Figure 9.18: The Additional KickOff Process.

switched on), and took 3.50 respectively 1.75 seconds.

We verified two desirable properties in the (non-variated) obtained hierarchical
timed automaton model.

(i) A[] (heart_sub.FLATLINE => (wasSwitchedOff == 1))

(ii) A[] (heart_Sub.AfterAContraction => A<> heart_Sub.AfterVContraction)

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Figure 9.19: Parameters That Yield Property (i).

Property (i) is a safety property
and states that the heart never
stops for too long, unless the
pacemaker was switched off by
the programmer (in which case
we cannot give any guarantees).
Property (ii) is a response prop-
erty and states that after an ar-
ticular contraction, there will in-
evitably follow a ventricular con-
traction. In particular this guar-
antees that no deadlocks are pos-
sible between these control situ-
ations.

Version 3.1.57 of the Uppaal tool4 is able to perform the model checking of both
properties successfully in 11.83 respectively 4.26 seconds. The verification of the
typically more expensive property (ii) is faster, since here it is possible to apply
a property preserving convex hull over-approximation that is not preservative with
respect to property (i). We use a Sun Enterprise 450 with UltraSPARC-II processors,
300 MHz, and made use of Uppaal’s rich set of optimization options.5 In particular
the active clock reduction gives drastic improvements in model checking time in this
example.

4The first release that includes the possibility to model check response properties was available
in April 2001.

5See also Chapter 5.

194 Chapter 9. Model Checking Hierarchical Timed Automata

It is worthwhile to mention that validity of property (i) is strongly dependent
on the parameter setting of the model. We use the constants from Figure 9.19. If
the programmer is allowed to switch between modes very fast, it is possible that
she prevents the pacemaker from doing its job. E.g., for MODE_SWITCH_DELAY = 65

the property (i) does not hold any more. In practice it is often a problem to find
parameter settings, that entail a safe or correct operation of the system. In related
work, an extended version of Uppaal is used to derive parameters yielding property
satisfaction automatically, see [HRSV01].

9.5 Reflection: Flattening Hierarchical Timed Automata

Hierarchical structures are powerful formalisms; one indication for this is that there
are many options on how to fill the details. This has been subject to intensive
research [vdB94,Har97]. As we see it, the crucial choice in our semantics for HTAs is
to treat cascades of entries and exits of superstates monolithically. This is somewhat
clumsy, but allows for a conceptually simple correspondence between configurations
of the hierarchical model and the flattened version.

Partially due to this decision, the reference implementation turned out to be
surprisingly complicated. The source consists of more than 9000 lines of documented
Java code.6 The high-level description given in this Chapter is a way to increase
trust in our procedure and to allow for future maintenance.

The global join construction is a side effect of treating exit steps monolithically.
We point out that entries and exits do not behave fully symmetric here. This is
not an introduced problem; exiting more than one superstate implicitly requires
synchronization. Giving conditions under which parts of a system to be entered is
simpler than specifying at what point in time they can be left or interrupted. To
the best of our knowledge this hat not been addressed before in the literature and
we believe there is room for further elaboration on this topic.

In the pacemaker case-study, the increase in size of the generated model seems
acceptable. Mainly entries and exits complicate Since we use committed locations
to encode this it probably does not contribute significantly to the model checking
time. The medium-sized model is sufficiently complicated to render the properties
we model check non-trivial. The parameters that yield the safety property, e.g.,
were found experimentally. As for the usability of the flattened model, a lay-outer
is desirable. The processes of the pacemaker case study are layouted by hand.

An alternative approach for model checking HTAs is to implement a model check-
ing engine that operates directly on the hierarchical model. The configuration vector
is more complicated to encode, but the sets of clock evaluations is not different from
other dense-time formalisms. The algorithmic challenge is the implementation of
superstate exits; basically the same computations as used in the global joins have to
be performed. We consider it interesting to compare the run-times of model check-
ing HTA models directly with those obtained after a flattening step. This would

6http://www.brics.dk/%7Eomoeller/hta/vanilla-1/

http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/
http://www.brics.dk/%7Eomoeller/hta/vanilla-1/

9.5. Reflection: Flattening Hierarchical Timed Automata 195

give an impression on how much overhead is really introduced by the flattening.
There are plans in the DoCS group at Uppsala to address this, and we refer to their
web-pages7 for further information.

7http://www.docs.uu.se/docs/index.eng.shtml

http://www.docs.uu.se/docs/index.eng.shtml
http://www.docs.uu.se/docs/index.eng.shtml
http://www.docs.uu.se/docs/index.eng.shtml
http://www.docs.uu.se/docs/index.eng.shtml
http://www.docs.uu.se/docs/index.eng.shtml

Epilogue

After all is said and done, a lot more will be said than done.

— Unknown

Tony Hoare started to do program verification as early as 1969. It was to sup-
plement the intuition and understanding of the designer by solid mathematical
proof. The development of analytic methods for digital creations has been a busy
field, decidability results for real-time formalisms are just one example for this.
Others are security protocols, formal hardware design, and proof carrying code.

So why do things go wrong?

We name three reasons. First, there is market pressure. Humans are willing
to take risks to win, rather than they are willing to do so to avoid losses. As for
products this means: better ship today and hope for the best. Second, correctness
is not enough an issue. During the last decade the world has witnessed that
badly written faulty software sells. Apparently other criteria, like feature, are
more important. Third, people developing in digital tend to be optimists. In the
tradition of mathematics, everything is wrong by default—until you proof it to
be right. For computers, this attitude is sometimes reversed: everything is fine,
until you find a bug.

As for doing things right, there cannot be a silver bullet. Digital design is
intrinsically complex. No single method can be expected to be sufficient to deal
with all of today’s complications, even less with those to come. But correctness
can be created. In small amounts.

It was our ambition to aid this quest for correctness with our work. Looking
back, we regret to leave many threads unfinished. The solutions to bring to
problems that deep and tasks that complex will take more than one man and
more than one life to finish.

It will be the challenge for industry to hold up virtues of design and engineering
in an age of market pressure and deadlines. Not only must it be worth doing, it
must be understood as worth doing it right. It is our conviction that—above all
other criteria of quality—correctness requires understanding.

It will be the challenge for academics to make the fruits of their research not
only useful, but also used. The threshold to overcome is to build methodologies
and tools that are guided to gold by other hands than those of their creators.

197

198

Bibliography

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. Uppaal - Now, Next, and Future. In F. Cassez, C. Jard,
B. Rozoy, and M. Ryan, editors, Modelling and Verification of Parallel
Processes, number 2067 in Lecture Notes in Computer Science Tutorial,
pages 100–125. Springer–Verlag, 2001. 18

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model Checking in
Dense Real-Time. Information and Computation, 104(1):2–34, 1993. A
preliminary version appeared in the Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science (LICS 1990). 14, 22,
49, 51, 76, 77, 79, 80, 91, 125, 126

[AD94] Rajeev Alur and David L. Dill. Automata for Modelling Real-Time
Systems. Theoretical Computer Science, 126(2):183–236, April 1994.
14, 41

[AdAG+01] Rajeev Alur, Luca de Alfaro, Radu Grosu, Thomas A. Henzinger, Minsu
Kang, Rupak Majumdar, Freddy Y.C. Mang, Christoph Meyer-Kirsch,
and Bow-Yaw Wang. Mocha: A Model Checking Tool that Exploits
Design Structure. Proceedings of 23rd International Conference on Soft-
ware Engineering, 2001. See http://www.cis.upenn.edu/%7Emocha/ .
164

[ADF+01] Tobias Amnell, Alexandre David, Elena Fersman, M. Oliver Möller,
Paul Petterson, and Wang Yi. Tools for Real-Time UML: Formal Veri-
fication and Code Synthesis, June 2001. in Implementation and Valida-
tion of Object-oriented Embedded Systems (SIVOES’2001), Budapest,
Hungary. 18

199

http://www.cis.upenn.edu/%7Emocha/
http://www.cis.upenn.edu/%7Emocha/
http://www.cis.upenn.edu/%7Emocha/
http://www.cis.upenn.edu/%7Emocha/
http://www.cis.upenn.edu/%7Emocha/

200

[AIKY95] Rajeev Alur, Alon Itai, Robert P. Kurshan, and Mihalis Yannakakis.
Timing Verification by Successive Approximation. Information and
Computation, 118(1):142–157, April 1995. 144

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying Programs with Un-
reliable Channels. Information and Computation, 127(2):91–101, June
1996. 71

[AJ01] Parosh Aziz Abdulla and Bengt Jonsson. Ensuring Completeness of
Symbolic Verification Methods for Infinite-State Systems. Theoretical
Computer Science, 256(1–2), 2001. 71

[AK95] Rajeev Alur and Robert P. Kurshan. Timing Analysis in COSPAN. In
Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors,
Proc. of Workshop on Verification and Control of Hybrid Systems III,
volume 1066 of Lecture Notes in Computer Science (LNCS), pages 220–
231. Springer–Verlag, October 1995. 76

[AL92] Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for Real
Time. In Proc. of REX Workshop “Real-Time: Theory in Practice”,
volume 600 of Lecture Notes in Computer Science (LNCS), pages 1–27.
Springer–Verlag, 1992. 99

[Alh98] Sinan Si Alhir. UML in a Nutshell. O’Reilly, Sebastapol, CA, 1998. 31

[Alu91] Rajeev Alur. Techniques for Automatic Verification of Real-Time Sys-
tems. PhD thesis, Stanford University, 1991. 44, 76

[AW99] Rajeev Alur and Bow-Yaw Wang. “Next” Heuristic for On-the-fly
Model Checking. In Proc. of CONCUR ’99: Concurrency Theory, vol-
ume 1664 of Lecture Notes in Computer Science (LNCS), pages 98–113.
Springer–Verlag, 1999. 153, 164, 165

[Bar96] Henk Barendregt. The Quest for Correctness. In Images of SMC re-
search, pages 39–58. Stichting Mathematisch Centrum, P.O. Box 94079,
1090 GB Amsterdam, 1996. 1, 3, 10

[BCM+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic Model Checking: 1020 States and
Beyond. In Proc. of IEEE Symp. on Logic in Computer Science, 1990.
11, 95

[BDG88] José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Com-
plexity I. Springer–Verlag, New York, NY, 1988. 65

[BDL+01a] Gerd Behrman, Alexandre David, Kim G. Larsen, M. Oliver Möller,
Paul Petterson, and Wang Yi. Uppaal - Present and Future. In P. Pet-
tersson and S. Yovine, editors, Workshop on Real-Time Tools, August

Bibliography 201

2001. Proceedings appeared as technical report 2001-014 Uppsala Uni-
versity, Sweden. 18

[BDL+01b] Gerd Behrman, Alexandre David, Kim G. Larsen, M. Oliver Möller,
Paul Petterson, and Wang Yi. Uppaal - Present and Future. In Proc.
of the 40th IEEE Conference on Decision and Control, pages 2281–2286,
Orlando, Florida, December 2001. IEEE Service Center. 18

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. Kronos: A Model Checking Tool for Real-
Time Systems. In Proc. of the 10th Int. Conf. on Computer Aided Ver-
ification, volume 1427 of Lecture Notes in Computer Science (LNCS),
pages 546–550. Springer–Verlag, 1998. 76, 100

[BE96] Grady Booch and Ed Eykholt. The Best of Booch: Designing Strategies
for Object Technology. SIGS Books & Multimedia, 1996. 23

[Bel58] Richard Bellman. On a Routing Problem. Quarterly of Applied Math-
ematics, 16(1):87–90, 1958. 82

[BG92] Gerard Berry and Georges Gonthier. The ESTEREL Synchronous Pro-
gramming Language: Design, Semantics, Implementation. Science of
Computer Programming, 19(2):87–152, November 1992. 38

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Muñoz, Sam
Owre, Harald Rueß, John Rushby, Vlad Rusu, Hassen Säıdi, Natarajan
Shankar, Eli Singerman, and Ashish Tiwari. An Overview of SAL. In
C. Michael Holloway, editor, LFM 2000: Fifth NASA Langley Formal
Methods Workshop, pages 187–196, Hampton, VA, jun 2000. NASA
Langley Research Center. 12

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of
Formal Methods. IEEE Software, 12(4):34–41, July 1995. 9

[BILT92] Beth H. Levy, Ivan V. Filippenko, Leo Marcus, and Telis Menas. Using
the State Delta Verification System (SDVS) for Hardware Verification.
In Proc. of the International Conference on Theorem Provers in Circuit
Design: Theory, Practice and Experience, pages 337–360, Nijmegen,
June 1992. IFIP TC10/WG 10.2, North-Holland. 9

[BJR96] Grady Booch, Ivar Jacobson, and Jim Rumbaugh. Unified Method for
Object-Oriented Development v. 0.9, 1996. Rational Software Corp. 24

[BK95] David A. Basin and Nils Klarlund. Hardware Verification Using
Monadic Second-Order Logic. In P. Wolper, editor, Proc. of the 7th Int.
Conf. on Computer Aided Verification, volume 939 of Lecture Notes in
Computer Science (LNCS), pages 31–41, Berlin;Heidelberg;New York,
January 1995. Springer–Verlag. 7

202

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing Ab-
stractions of Infinite State Systems Compositionally and Automatically.
In Alan J. Hu and Moshe Y. Vardi, editors, Proc. of the 10th Int. Conf.
on Computer Aided Verification, volume 1427 of Lecture Notes in Com-
puter Science (LNCS), pages 319–331, Vancouver, Canada, June 1998.
Springer–Verlag. 124

[BM79] Robert S. Boyer and J. Strother Moore. A Computational Logic. Aca-
demic Press, New York, 1979. 9

[BM88] Robert S. Boyer and J. Strother Moore. A Computational Logic Hand-
book. Academic Press, 1988. 9

[BR95] Grady Booch and Jim Rumbaugh. Unified Method for Object-Oriented
Development v. 0.8, 1995. Rational Software Corp. 24

[BR01] Thomas Ball and Sriram K. Rajamani. The SLAM Toolkit. In G. Berry
and A. Finkel, editors, Proc. of the 13th Int. Conf. on Computer
Aided Verification, volume 2102 of Lecture Notes in Computer Science
(LNCS), pages 260–264, 2001. 16

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, Reading, Massachusetts,
USA, 1st edition, 1999. 24, 30, 36, 38, 152

[Bru95] Giorgio Bruno. Model-based Software Engineering. Chapman & Hall,
London, 1995. 2, 14

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean-Function Ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691, August
1986. 11, 83

[Bry95] Randal E. Bryant. Binary Decision Diagrams and Beyond: Enabling
Technologies for Formal Verification. In International Conference on
Computer Aided Design, pages 236–245. IEEE Computer Society Press,
1995. 11

[CC77] Patrik Cousot and Radhia Cousot. Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. Proc. of the 4th ACM Symposium on
Principles of Programming Languages, pages 238–252, January 1977.
10, 119, 120, 122

[CC00] Patrick Cousot and Radhia Cousot. Temporal Abstract Interpretation.
In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POLP-00), pages 12–25, N.Y.,
January 19–21 2000. ACM Press. 11, 122

Bibliography 203

[CC01] Patrick Cousot and Radhia Cousot. Static Analysis of Embedded Soft-
ware: Problems and Perspectives, invited paper. In T.A. Henzinger and
C.M. Kirsch, editors, Proc. First Int. Workshop on Embedded Software,
EMSOFT 2001, volume 2211 of Lecture Notes in Computer Science
(LNCS), pages 97–113. Springer–Verlag, 2001. 15

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Corina S. Pasare-
anu, Robby, Shawn Laubach, and Hongjun Zheng. Bandera : Extract-
ing Finite-state Models from Java Source Code. In Proc. of the 22nd
International Conference on Software Engineering, pages 439–448, June
2000. 15

[CE82] Edmund M. Clarke and E. Allen Emerson. Synthesis of Synchronization
Skeletons from Branching Time Temporal Logic. In Proc. Workshop on
Logics of Programs, volume 131 of Lecture Notes in Computer Science
(LNCS), pages 52–71. Springer–Verlag, 1982. 153

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
Verification of Finite State Concurrent System Using Temporal Logic.
ACM Trans. on Programming Languages and Systems, 8(2):244–263,
1986. 4

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided Abstraction Refinement. In E.A.
Emerson and A.P. Sistla, editors, Proc. of the 12th Int. Conf. on Com-
puter Aided Verification, volume 1855 of Lecture Notes in Computer
Science (LNCS), pages 154–169. Springer–Verlag, 2000. 125

[CGL93] Karlis Cerans, Jens Chr. Godskesen, and Kim G. Larsen. Time Modal
Specification – Theory and Tools. In Proc. of the 5th Int. Conf. on
Computer Aided Verification, volume 697 of Lecture Notes in Computer
Science (LNCS), pages 253–267. Springer–Verlag, 1993. 76

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 1999. 11

[CHR91] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A Calculus of
Durations. Information Processing Letters, 40(5):269–276, December
1991. 14

[CK96] Edmund M. Clarke and Robert P. Kurshan. Computer-Aided Verifica-
tion. IEEE Spectrum, 6(33):61–67, June 1996. 153

[CL00] Franck Cassez and Kim G. Larsen. The Impressive Power of Stop-
watches. In Proc. of CONCUR 2000: Concurrency Theory, volume
1877 of Lecture Notes in Computer Science (LNCS), pages 138–152.
Springer–Verlag, 2000. 178

204

[CLR92] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. MIT Press and McGraw-Hill Book Company,
6th edition, 1992. 82

[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Man-
dayam Srivas. A Tutorial Introduction to PVS. In WIFT ’95: Work-
shop on Industrial-Strength Formal Specification Techniques, Boca Ra-
ton, Florida, April 1995. Revised version available from http://-
www.csl.sri.com/fm-papers.html. 7, 9

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Con-
currency Workbench: A Semantics Based Tool for the Verification of
Concurrent Systems. ACM Transactions on Programming Languages
and Systems, 15(1):36–72, January 1993. 153

[CY91] Costas Courcoubetis and Mihalis Yannakakis. Minimum and Maximum
Delay Problems in Real Time Systems. In Proc. of 3rd Workshop on
Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science (LNCS), pages 399–409. Springer–Verlag, 1991. Full version in
Formal Methods in System Design (special issue for 3rd CAV), 1(4), pp.
385-415, 1992. 91

[Dam96] Dennis René Dams. Abstract Interpretation and Partition Refinement
for Model Checking. PhD thesis, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands, July 1996. 11,
122, 123, 124, 129

[DD01] Satyaki Das and David L. Dill. Successive Approximation of Ab-
stract Transition Relations. In Proc. of Logic in Computer Science
(LICS2001), pages 51–60, 2001. 125

[Dil89] David L. Dill. Timing Assumptions and Verification of Finite-State
Concurrent Systems. In J. Sifakis, editor, Proceedings of the Interna-
tional Workshop on Automatic Verification Methods for Finite State
Systems, volume 407 of Lecture Notes in Computer Science (LNCS),
pages 197–212, Berlin, June 1989. Springer–Verlag. 82

[DM01] Alexandre David and M. Oliver Möller. From HUppaal to Uppaal:
A Translation from Hierarchical Timed Automata to Flat Timed Au-
tomata. Research Series RS-01-11, BRICS, Department of Computer
Science, University of Aarhus, March 2001. 17, 18, 71

[DMY01] Alexandre David, M. Oliver Möller, and Wang Yi. Formal Verification
of UML Statecharts with Real-Time Extensions. In M. R. Hansen, ed-
itor, The 13th Nordic Workshop on Programming Theory (NWPT’01),
appeared as technical report of the Technical University of Denmark,
IMM-TR-2001-12, October 2001. 18

http://www.csl.sri.com/fm-papers.html
http://www.csl.sri.com/fm-papers.html
http://www.csl.sri.com/fm-papers.html
http://www.csl.sri.com/fm-papers.html

Bibliography 205

[DMY02] Alexandre David, M. Oliver Möller, and Wang Yi. Formal Verifica-
tion of UML Statecharts with Real-Time Extensions. In R.-D. Kutsche
and H. Weber, editors, Fundamental Approaches to Software Engineer-
ing (FASE’2002), volume 2306 of Lecture Notes in Computer Science
(LNCS), pages 218–232. Springer–Verlag, 2002. 17, 18

[Dou99a] Bruce Powel Douglass. Doing Hard Time: Developing Real-time Sys-
tems with UML, Objects, Frameworks, and Patterns. Object Technol-
ogy Series. Addison-Wesley, 1999. 31, 36, 149, 173

[Dou99b] Bruce Powel Douglass. Real-Time UML, Second Edition - Developing
Efficient Objects for Embedded Systems. Addison-Wesley, 1999. 31

[DT98] Conrado Daws and Stavros Tripakis. Model Checking of Real-Time
Reachability Properties Using Abstractions. In B. Steffen, editor, Proc.
of the 4th Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, volume 1384 of Lecture Notes in Computer Science
(LNCS), pages 313–329. Springer–Verlag, 1998. 14, 92, 95, 101, 120

[DWT95] David L. Dill and Howard Wong-Toi. Verification of Real-Time Systems
by Successive Over and Under Approximation. In P. Wolper, editor,
Proc. of the 7th Conference on Computer-Aided Verification, CAV’95,
volume 939 of Lecture Notes in Computer Science (LNCS), pages 409–
422. Springer–Verlag, 1995. 145

[DY96] Conrado Daws and Sergio Yovine. Reducing the Number of Clock Vari-
ables of Timed Automata. In Proc. of the 17th IEEE Real-Time Systems
Symposium, pages 73–81. IEEE Computer Society Press, 1996. 92

[Fla88] Phillippe Flajolet. Mathematical Methods in the Analysis of Algorithms
and Data Structures. Lecture Notes for A Graduate Course on Compu-
tation Theory, Udine (Italy), Fall 1984. In E. Börger, editor, Trends in
Theoretical Computer Science, pages 225–304. Computer Science Press,
1988. 154

[Fla97] Philippe Flajolet. A Problem in Statistical Classification Theory, 1997.
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/-
schroeder.html. 155

[FORS01] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and Natarajan
Shankar. ICS: Integrated Canonizer and Solver. In A. Finkel G. Berry,
H. Comon, editor, CAV 01: Computer-Aided Verification, volume
2101 of Lecture Notes in Computer Science (LNCS), pages 246–249.
Springer–Verlag, 2001. 141

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-
Based Model Checking Using Modal Transition Systems. In K. G.

http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/schroeder.html

206

Larsen and M. Nielsen, editors, Proc. of CONCUR 2001: Concurrency
Theory, Lecture Notes in Computer Science (LNCS), pages 426–440.
Springer–Verlag, August 2001. 120, 124

[GJ79] Michael R Garey and David S Johnson. Computers and Intractability,
a Guide to the Theory of NP-Completeness. W.H. Freeman and Co.,
San Francisco, 1979. 156

[GJS76] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some
Simplified NP -Complete Graph Problems. Theoretical Computer Sci-
ence, 1(3):237–267, February 1976. 156

[GMW79] Michael J. Gordon, Arthur J. Miller, and C. P. W. Wadsworth. Edin-
burgh LCF. Springer–Verlag, Berlin, 1 edition, 1979. 9

[Gom00] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Ap-
plications with UML. Object Technology Series. Addison-Wesley, 2000.
31

[GPS96] Patrice Godefroid, Doron Peled, and Mark Staskauskas. Using Par-
tial Order Methods in the Formal Validation of Industrial Concurrent
Programs. IEEE, Transactions on Software Engineerings, 22:496–507,
1996. 165

[GRD91] Saul B. Gelfand, C. S. Ravishankar, and Edward J. Delp. An Iterative
Growing and Pruning Algorithm for Classification Tree Design. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
13(2):163–174, February 1991. 171

[GS97] Susanne Graf and Hassen Säıdi. Construction of Abstract State Graphs
with PVS. In Orna Grumberg, editor, Computer Aided Verification.
9th International Conference (CAV97), volume 1254 of Lecture Notes
in Computer Science (LNCS), pages 72–83. Springer–Verlag, 1997. 124

[GW91] Patrice Godefroid and Pierre Wolper. Using Partial Orders for the
Efficient Verification of Deadlock Freedom and Safety Properties. In
Proc. of 3rd Workshop on Computer Aided Verification, Lecture Notes
in Computer Science (LNCS). Springer–Verlag, 1991. 11

[Hal90] Anthony Hall. Seven Myths of Formal Methods. IEEE Software,
7(5):11–19, September 1990. 9

[Har84] David Harel. Statecharts: A Visual Approach to Complex Systems.
Technical Report CS84-05, The Weizmann Institute of Science, Febru-
ary 1984. (revised December 1984). 32

[Har87] David Harel. Statecharts: A Visual Formalism for Complex System.
Science of Computer Programming, 8(3):231–274, 1987. 32, 33, 152

Bibliography 207

[Har88] David Harel. On Visual Formalisms. Communications of the ACM,
31(5):514–530, May 1988. 32

[Har97] David Harel. Some Thoughts on Statecharts, 13 Years Later. In
O. Grumberg, editor, Proc. of the 9th Int. Conf. on Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science
(LNCS), pages 226–231. Springer–Verlag, 1997. 194

[HG94] David Harel and Eran Gery. Executable Object Modeling with Stat-
echarts. Technical Report CS94-20, Weizmann Institute of Science,
Faculty of Mathematics and Computer Science, January 1, 1994. 38

[HG97] David Harel and Eran Gery. Executable Object Modeling with State-
charts. IEEE Computer, 30(7), 1997. 38

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech:
A Model Checker for Hybrid Systems. In O. Grumberg, editor, Proc.
of the 9th Int. Conf. on Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science (LNCS), pages 460–463. Springer–
Verlag, 1997. 76

[Hig01] Uwe Higgen. Automatic Test Case Generation out of UML Mod-
els, 2001. master thesis, Universität Oldenburg, 2001, see http://-
www.uwe-higgen.de/. 216

[Hil99] Martin Hiller. Objektorientierte Systemanalyse mit Rhapsody, 1999.
Diplomarbeit (in German), University of Ulm, Germany, corresponds
to a master thesis. 38

[HJJ+97] Jesper G. Henriksen, Jakob Jensen, Michael Jørgensen, Nils Klarlund,
Robert Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic
Second-Order Logic in Practice. BRICS, Centre of the Danish National
Research Foundation for Basic Research in Computer Science, Depart-
ment of Computer Science, University of Aarhus, 1.1st edition, 1997.
7

[HN96] David Harel and Amnon Naamad. The STATEMATE Semantics of
Statecharts. ACM Trans. on Software Engineering and Methodology,
5(4):293–333, October 1996. 33

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic Model Checking for Real-Time Systems. Informa-
tion and Computation, 111(2):193–244, 1994. 95, 112

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice–Hall,
1985. 9

http://www.uwe-higgen.de/
http://www.uwe-higgen.de/
http://www.uwe-higgen.de/
http://www.uwe-higgen.de/

208

[Hol91] Gerard J. Holzmann. The Design and Validation of Computer Protocols.
Prentice Hall, 1991. 94

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, May 1997. 70, 94, 153

[Hol98] Gerard J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods
in System Design, 13:289–307, 1998. 94

[HP85] David Harel and Amir Pnueli. On the Development of Reactive Sys-
tems. In K. R. Apt, editor, Logics and Models of Concurrent Systems,
volume F-13 of NATO ASI, pages 477–498, New York, 1985. Springer–
Verlag. 2, 10, 14, 32

[HPSS87] David Harel, Amir Pnueli, J. P. Schmidt, and Rivi Sherman. On the
Formal Semantic of Statecharts. In Proc. of IEEE Symposium on Logic
in Computer Science (LICS 1987), pages 54–64, 1987. 32, 33

[HRdR92] Jozef J. M. Hooman, S. Ramesh, andWillem-Paul de Roever. A Compo-
sitional Axiomatization of Statecharts. Theoretical Computer Science,
101(2):289–335, July 1992. 33

[HRP94] Nicolas Halbwachs, Pascal Raymond, and Yann-Erick Proy. Verification
of Linear Hybrid Systems by Means of Convex Approximations. In
Static Analysis Symposium, volume 864 of Lecture Notes in Computer
Science (LNCS), pages 223–237, 1994. 76

[HRSV01] Thomas S. Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaan-
drager. Linear Parametric Model Checking of Timed Automata. Re-
search Series RS-01-5, BRICS, Department of Computer Science, Uni-
versity of Aarhus, January 2001. 44 pp. 194

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. For-
mal Modelling and Analysis of an Audio/Video Protocol: An Industrial
Case Study Using Uppaal. In Proc. of the 18th IEEE Real-Time Sys-
tems Symposium, pages 2–13. IEEE Computer Society Press, December
1997. 41

[HU80] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, N. Reading,
MA, 1980. 65

[IKL+00] Torsten K. Iversen, K̊are J. Kristoffersen, Kim G. Larsen, Morten
Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson, and
Chris B. Thomasen. Model Checking Real-Time Control Programs —
Verifying LEGO Mindstorms Systems Using Uppaal. In Proc. of 12th
Euromicro Conference on Real-Time Systems, pages 147–155. IEEE
Computer Society Press, June 2000. 114, 118

Bibliography 209

[IL00] I-Logix. Rhapsody User Guide, 2000. Release 3.0, available as part
of the free trial distribution http://www.ilogix.com/quick%5Flinks/-
downloads.cfm. 68

[Jai94] Raj Jain. FDDI Handbook: High-Speed Networking with Fiber and
Other Media. Addison-Wesley, Reading, MA, April 1994. 101

[JCJÖ93] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Övergaard. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, revised printing edition, 1993. 23

[JK90] Ryszard Janicki and Maciej Koutny. Using Optimal Simulations to Re-
duce Reachability Graphs. In Proc. of 2nd International Conference on
Computer-Aided Verification, volume 531 of Lecture Notes in Computer
Science (LNCS), pages 166–175. Springer–Verlag, 1990. 11

[Joh01] Steven D. Johnson. View from the Fringe of the Fringe. In Proc.
in Theorem Proving and Higher Order Logics, volume 2152 of Lecture
Notes in Computer Science (LNCS), page 4. Springer–Verlag, 2001. 15

[Kat99] Joost-Pieter Katoen. Concepts, Algorithms, and Tools for Model
Checking, 1999. Lecture Notes of the Course ”Mechanized Validation
of Parallel Systems”, course number 10359, Friedrich-Alexander Uni-
versität Erlangen-Nürnberg. 11

[Kel95] Peter Kelb. Abstraktionstechniken für automatische Verifikationsmeth-
oden. PhD thesis, Universität Oldenburg, Carl v. Ossietzky Universität,
Dekanat Informatik, Postfach, 26111 Oldenburg, Germany, December
1995. 11, 122

[Kic96] Alexander Kick. Generation of Counterexamples and Witnesses for the
Mu-Calculus. PhD thesis, University of Karlsruhe, Germany, 1996. 141

[KK01] Roope Kaivola and Katherine Kohatsu. Proof Engineering in the Large:
Formal Verification of Pentium4 Floating-Point Divider. In T. Mar-
garia and T. Melham, editors, Correct Hardware Design and Verifica-
tion Methods, 11th IFIP WG 10.5 Advanced Research Working Con-
ference, CHARME 2001, Livingston, Scotland, UK, volume 2144 of
Lecture Notes in Computer Science (LNCS), pages 196–211, New York,
NY, USA, September 2001. Springer–Verlag. 15

[KL96] Inhye Kang and Insup Lee. An Efficient State Space Generation for
Analysis of Real-Time Systems. In International Symposium on Soft-
ware Testing and Analysis, January 1996. TREAT is available at http:/-
/www.cis.upenn.edu/%7Elee/inhye/treat.html. 76

http://www.ilogix.com/quick%5Flinks/downloads.cfm
http://www.ilogix.com/quick%5Flinks/downloads.cfm
http://www.ilogix.com/quick%5Flinks/downloads.cfm
http://www.ilogix.com/quick%5Flinks/downloads.cfm
http://www.ilogix.com/quick%5Flinks/downloads.cfm
http://www.cis.upenn.edu/%7Elee/inhye/treat.html
http://www.cis.upenn.edu/%7Elee/inhye/treat.html
http://www.cis.upenn.edu/%7Elee/inhye/treat.html
http://www.cis.upenn.edu/%7Elee/inhye/treat.html
http://www.cis.upenn.edu/%7Elee/inhye/treat.html
http://www.cis.upenn.edu/%7Elee/inhye/treat.html

210

[KM01] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual.
BRICS Notes Series NS-01-1, Department of Computer Science, Uni-
versity of Aarhus, January 2001. Available from http://www.brics.dk/-
mona/. Revision of BRICS Notes Series NS-98-3. 7

[KMP96] Yonit Kesten, Zohar Manna, and Amir Pnueli. Verifying Clocked Tran-
sition Systems. In Hybrid Systems III, volume 1066 of Lecture Notes in
Computer Science (LNCS), pages 13–40. Springer–Verlag, 1996. 33

[Kob99] Cris Kobryn. UML 2001: A Standardization Odyssey. Communications
of the ACM, 42(10):29–37, October 1999. 25, 27

[Kob01a] Cris Kobryn. UML 2.0 Roadmap, 2001. slide show corresponding to ar-
ticle [Kob01b], online available at http://www.celigent.com/outgoing/-
presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip. 24

[Kob01b] Cris Kobryn. UML 2.0 Roadmap: Fast Track or Detours, April 2001.
magazine article in “Software Development”, online available at http:/-
/www.sdmagazine.com/articles/2001/0104/. 24, 25, 27, 210

[Koz83] Dexter C. Kozen. Results on the Propositional mu-Calculus. Theoretical
Computer Science, 27(3):333–354, December 1983. 123, 129

[KP92] Yonit Kesten and Amir Pnueli. Timed and Hybrid Statecharts and
their Textual Representation. In J. Vytopil, editor, Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 571 of Lecture Notes
in Computer Science (LNCS), pages 591–619. Springer–Verlag, 1992.
33

[Lam87] Leslie Lamport. A Fast Mutual Exclusion Algorithm. ACM Transations
on Computer Systems, 5(1):1–11, February 1987. 99

[LBBO01] Yassine Lachnech, Saddek Bensalem, Sergey Berezin, and Sam Owre.
Incremental verification by abstraction. In T. Margaria and W. Yi, ed-
itors, Tools and Algorithms for the Construction and Analysis of Sys-
tems: 7th International Conference, TACAS 2001, volume 2031 of Lec-
ture Notes in Computer Science (LNCS), pages 98–112, Genova, Italy,
April 2001. Springer–Verlag. 125

[LL73] C. L. Liu and James W. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal of the ACM,
20(1):46–61, January 1973. 13

[LL98] Francois Laroussinie and Kim G. Larsen. CMC: A Tool for Compo-
sitional Model Checking of Real-Time Systems. In Proc. of Joint In-
ternational Conference on Formal Description Techniques and Protocol
Specification, Testing, and Verification, 1998. 76

http://www.brics.dk/mona/
http://www.brics.dk/mona/
http://www.brics.dk/mona/
http://www.brics.dk/mona/
http://www.brics.dk/mona/
http://www.celigent.com/outgoing/presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip
http://www.celigent.com/outgoing/presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip
http://www.celigent.com/outgoing/presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip
http://www.celigent.com/outgoing/presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip
http://www.celigent.com/outgoing/presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip
http://www.celigent.com/outgoing/presentations/Kobryn%5FUML2%5FRoadmap%5FR4.zip
http://www.sdmagazine.com/articles/2001/0104/
http://www.sdmagazine.com/articles/2001/0104/
http://www.sdmagazine.com/articles/2001/0104/
http://www.sdmagazine.com/articles/2001/0104/
http://www.sdmagazine.com/articles/2001/0104/
http://www.sdmagazine.com/articles/2001/0104/
http://www.sdmagazine.com/articles/2001/0104/

Bibliography 211

[LLPY97] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Effi-
cient Verification of Real-Time Systems: Compact Data Structures and
State-Space Reduction. In Proc. of the 18th IEEE Real-Time Systems
Symposium, pages 14–24. IEEE Computer Society Press, December
1997. 82, 92, 93

[LP97] Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA Pro-
tocol Start-Up Mechanism. In Proc. of IEEE Pacific Rim International
Symposium on Fault-Tolerant Systems, pages 235–242, 1997. 41

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997. 41, 42, 76

[LPY98] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and
Analysis of a Gear Controller. In Proc. of the 4th International Work-
shop on Tools and Algorithms for the Construction and Analysis of
Systems., volume 1384 of Lecture Notes in Computer Science (LNCS),
pages 281–297. Springer–Verlag, 1998. 41

[LWYP99] Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock
Difference Diagrams. Nordic Journal of Computing, 6(3):271–298, 1999.
83

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publish-
ers, San Mateo, CA, 1996. 167

[MA00] M. Oliver Möller and Rajeev Alur. Heuristics for Hierarchical Parti-
tioning with Application to Model Checking. Research Series RS-00-21,
BRICS, Department of Computer Science, University of Aarhus, Au-
gust 2000. 30 pp, available online at http://www.brics.dk/RS/00/21/.
18, 164

[MA01] M. Oliver Möller and Rajeev Alur. Heuristics for Hierarchical Partition-
ing with Application to Model Checking. In T. Margaria and T. Mel-
ham, editors, Correct Hardware Design and Verification Methods, 11th
IFIP WG 10.5 Advanced Research Working Conference, CHARME
2001, Livingston, Scotland, UK, volume 2144 of Lecture Notes in Com-
puter Science (LNCS), pages 71–85, New York, NY, USA, September
2001. Springer–Verlag. 18

[McC90] William W. McCune. OTTER Users’ Guide, Version 2.0. Argonne
National Laboratory, 1990. 9

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993. 11

http://www.brics.dk/RS/00/21/
http://www.brics.dk/RS/00/21/
http://www.brics.dk/RS/00/21/
http://www.brics.dk/RS/00/21/
http://www.brics.dk/RS/00/21/
http://www.brics.dk/RS/00/21/
http://www.brics.dk/RS/00/21/

212

[Mil89] Robin Milner. Communication and Concurrency. Prentice–Hall, 1989.
9

[MLAH99] Jesper Møller, Jakob Lichtenberg, Henrik R. Andersen, and Henrik Hul-
gaard. Difference Decision Diagrams. In Computer Science Logic, The
IT University of Copenhagen, Denmark, September 1999. 83

[MLPS97] Erich Mikk, Yassine Lakhnech, Carsta Petersohn, and Michael Siegel.
On Formal Semantics of Statecharts as Supported by STATEMATE. In
2nd BCS-FACS Northern Formal Methods Workshop. Springer–Verlag,
July 1997. 33

[Möl02] M. Oliver Möller. Parking Can Get You There Faster - Model Augmen-
tation to Speed up Real-Time Model-Checking. in Theory and Practice
of Timed Systems (TPTS’2002), 2002. 17

[MP91] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems, Specification. Springer–Verlag, 1991. 33

[MRS01] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction
for Dense Real-Time Systems. Research Series RS-01-44, BRICS, De-
partment of Computer Science, University of Aarhus, November 2001.
18

[MRS02] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction
for Dense Real-Time Systems. in Theory and Practice of Timed Systems
(TPTS’2002), 2002. 18

[MT93] Michael J.C. Gordon and Thomas F. Melham. Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993. 9

[Nie00] Brian Nielsen. Specification and Test of Real-Time Systems. PhD the-
sis, Department of Computer Science, Aalborg University, Denmark,
April 2000. 6

[NK00] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic Program Trans-
formations for Automatic Abstraction. In E.A. Emerson and A.P. Sistla,
editors, Proc. of the 12th Conference on Computer-Aided Verification,
CAV’2000, volume 1855 of Lecture Notes in Computer Science (LNCS),
pages 435–449, Chicago, IL, 2000. Springer–Verlag. 145

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles
of Program Analysis. Springer–Verlag, 1999. 10, 51

[NS94] Xavier Nicollin and Joseph Sifakis. The Algebra of Timed Pro-
cesses ATP: Theory and Application. Information and Computation,
114(1):131–178, 1994. 14

Bibliography 213

[OCL97] Object Constraint Language Specification, 1997. part of the UML stan-
dardization, see http://www.klasse.nl/ocl/ocl-status-text.html. 30

[OD98] Ernst-Rüdiger Olderog and Henning Dierks. Decomposing Real-Time
Specifications. In COMPOS: International Symposium on Composi-
tionality: The Significant Difference, volume 1536 of Lecture Notes in
Computer Science (LNCS), pages 465–489. Springer–Verlag, 1998. 14

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, Massachusetts - Menlo Park, California - New York,
1994. 65

[Par97a] UML Partners. Unified Modeling Language v. 1.0, January 1997. OMG
document ad/97-01-14. 24

[Par97b] UML Partners. Unified Modeling Language v. 1.1, August 1997. OMG
document ad/97-08-11. 24

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828
of Lecture Notes in Computer Science (LNCS). Springer–Verlag, New
York, NY, USA, 1994. 9

[Pet99] Paul Pettersson. Modelling and Analysis of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Department of
Computer Systems, Uppsala University, February 1999. 48, 82, 93

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings
of the 18th IEEE Symposium on the Foundations of Computer Sci-
ence (FOCS-77), pages 46–57, Providence, Rhode Island, October 31–
November 2 1977. IEEE Computer Society Press. 4

[Pnu86] Amir Pnueli. Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: a Survey of Current Trends. In J.W.
de Bakker, W.P de Roever, and G. Rozenberg, editors, Current Trends
in Concurrency: Overviews and Tutorials, volume 224 of Lecture Notes
in Computer Science (LNCS), pages 510–584. Springer–Verlag, 1986.
4, 32

[Pnu97] Amir Pnueli. Verification Engineering: A Future Profession, Au-
gust 1997. A. M. Turing Award Lecture, Sixteenth Annual ACM
Symposium on Principles of Distributed Computing (PODC 1990),
San Diego, slides available at http://www.wisdom.weizmann.ac.il/-
%7Eamir/invited-talks.html. 6

[PS01] Amir Pnueli and M. Shalev. What is in a Step: On the Semantics
of Statecharts. In Proc. Symp. on Theoret. Aspects of Comput. Soft.,
volume 525 of Lecture Notes in Computer Science (LNCS), pages 244–
464, Berlin, 1001. Springer–Verlag. 37

http://www.klasse.nl/ocl/ocl-status-text.html
http://www.klasse.nl/ocl/ocl-status-text.html
http://www.klasse.nl/ocl/ocl-status-text.html
http://www.klasse.nl/ocl/ocl-status-text.html
http://www.klasse.nl/ocl/ocl-status-text.html
http://www.wisdom.weizmann.ac.il/%7Eamir/invited-talks.html
http://www.wisdom.weizmann.ac.il/%7Eamir/invited-talks.html
http://www.wisdom.weizmann.ac.il/%7Eamir/invited-talks.html
http://www.wisdom.weizmann.ac.il/%7Eamir/invited-talks.html
http://www.wisdom.weizmann.ac.il/%7Eamir/invited-talks.html

214

[PU97] Carsta Petersohn and Luis Urbina. A Timed Semantics for the STATE-
MATE Implementation of Statecharts. In J. Fitzgerald, C. B. Jones,
and P. Lucas, editors, FME’97: Industrial Applications and Strength-
ened Foundations of Formal Methods (Proc. 4th Intl. Symposium of For-
mal Methods Europe, Graz, Austria, September 1997), volume 1313 of
Lecture Notes in Computer Science (LNCS), pages 553–572. Springer–
Verlag, September 1997. 33

[RBP+92] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, 1992. 23

[Rha02] Rhapsody, 2002. a commercial UML modeling tool by I-Logix, see
http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm. 32

[RR88] George M. Reed and A. W. Roscoe. A Timed Model for Communicating
Sequential Processes. Theoretical Computer Science, 58(1-3):249–261,
June 1988. 14

[RTF98] Revision Task Force. OMG Unified Modeling Language Specification,
v. 1.2, December 1998. document ad/98-12-02, Object Management
Group. 25

[RTF99] UML Revision Task Force. Unified Modeling Language Specification
v. 1.3, June 1999. document ad/99-06-08, Object Management Group.
23, 25

[RTF01] UML Revision Task Force. Requests for Proposals: Unified Model-
ing Language Specification v. 2.0, 2000/2001. documents ad/00-09-01,
ad/00-09-03, and Group, issued between March and September. 25

[Rud92] Piotr Rudnicki. An Overview of the Mizar Project. Notes to a talk
at the workshop on Types for Proofs and Programs, available through
anonymous ftp: pub/cs-reports/baastad.92/proc.ps.Z on ftp://-
ftp.cs.chalmers.se, June 1992. 9

[Rus00] John Rushby. Disappearing Formal Methods. In High-Assurance Sys-
tems Engineering Symposium, pages 95–96, Albuquerque, NM, Novem-
ber 2000. Association for Computing Machinery. 8

[RvHO91] John Rushby, Friedrich von Henke, and Sam Owre. An Introduction to
Formal Specification and Verification Using EHDM. Technical Report
CSL-91-2, SRI International, Menlo Park, California, February 1991.
online available at http://www.csl.sri.com/reports/html/csl-91-2.html.
9

[Sch70] Ernst Schröder. Vier combinatorische Probleme. Zentralblatt. f. Math.
Phys., 15:361–376, 1870. 154

http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm
http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm
http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm
http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm
http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm
http://www.ilogix.com/products/rhapsody/rhap%5Finc.cfm
ftp://ftp.cs.chalmers.se
ftp://ftp.cs.chalmers.se
ftp://ftp.cs.chalmers.se
http://www.csl.sri.com/reports/html/csl-91-2.html
http://www.csl.sri.com/reports/html/csl-91-2.html
http://www.csl.sri.com/reports/html/csl-91-2.html
http://www.csl.sri.com/reports/html/csl-91-2.html
http://www.csl.sri.com/reports/html/csl-91-2.html
http://www.csl.sri.com/reports/html/csl-91-2.html

Bibliography 215

[Sha93] Natarajan Shankar. Verification of Real-Time Systems Using PVS. In
Costas Courcoubetis, editor, Proc. of the 5th Int. Conf. on Computer
Aided Verification, volume 697 of Lecture Notes in Computer Science
(LNCS), pages 280–291, Elounda, Greece, June/July 1993. Springer–
Verlag. 14

[She95] Naveed Sherwani. Algorithms for VLSI Physical Design Automation -
2nd Edition. Kluwer Academic Publishers, Norwell, USA, 1995. 171

[Sip96] Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing company, Boston, MA, 1996. 65

[SP00] Perdita Stevens and Rob Pooley. Using UML Software Engineering with
Objects and Components. Object Techology Series. Addison-Wesley,
updated edition, 2000. 31

[SPE99] Request for Proposal: Software Process Engineering (SPE) Manage-
ment, 1999. documents ad/99-11-04, Object Management Group, is-
sued between March and September. 28

[SPT01] Response to the OMG RFP for Schedulability, Performance, and Time,
2001. Revised Submission, 18 June 2001, OMG document ad/2001-06-
14 available from http://www.omg.org. 32

[SS99] Hassen Säıdi and Natarajan Shankar. Abstract and Model Check While
you Prove. In Proc. of the 11th Int. Conf. on Computer Aided Veri-
fication, volume 1633 of Lecture Notes in Computer Science (LNCS),
pages 443–454, 1999. 11, 124, 125

[ST01] Daniel A. Spielman and Shang-Hua Teng. Smoothed Analysis of Algo-
rithms: Why the Simplex Algorithm Usually Takes Polynomial Time.
In Proceedings of the 33rd Annual ACM Symposium on the Theory of
Computing, pages 296–305, 2001. 7

[Ste98] Perdita Stevens. A Verification Tool Developer’s Vade Mecum. Int.
Journal on Software Tools for Technology Transfer, 2:89–94, 1998. 9

[SZJ94] David Scholefield, Hussein Zedan, and He Jifeng. A Specification Ori-
ented Semantics for the Refinement of Real-Time Systems. Theoretical
Computer Science, 131(1):219–241, 1994. 14

[TAKB96] Serdar Tasiran, Rajeev Alur, Robert P. Kurshan, and Robert K. Bray-
ton. Verifying Abstractions of Timed Systems. In Proc. of CONCUR
’96: Concurrency Theory, volume 1119 of Lecture Notes in Computer
Science (LNCS), pages 546–562. Springer–Verlag, 1996. 95

http://www.omg.org
http://www.omg.org
http://www.omg.org

216

[TC96] Stavros Tripakis and Costas Courcoubetis. Extending Promela and Spin
for Real-Time. In Proc. of the 2nd Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, pages 329–348. Springer–
Verlag, March 1996. 76

[TY01] Stavors Tripakis and Sergio Yovine. Analysis of Timed Systems Using
Time-abstracting Bisimulations. Formal Methods in System Design,
18(1):25–68, January 2001. 129, 145

[UML01] Unified Modeling Language v. 1.4, 2001. online available from the Ob-
ject Management Group (OMG) at http://www.omg.org. 25, 27, 32,
36

[Uri98] Tomás E. Uribe. Abstraction-Based Deductive-Algorithmic Verification
of Reactive Systems. PhD thesis, Computer Science Department, Stan-
ford University, December 1998. Technical report STAN-CS-TR-99-
1618. 144

[vdB94] Michael von der Beeck. A Comparison of Statechart Variants. In
H. Langmaack, W. de Roever, and J. Vytopil, editors, Formal Tech-
niques in RealTime and Fault-Tolerant Systems, volume 863 of Lecture
Notes in Computer Science (LNCS), pages 128–148. Springer–Verlag,
1994. 32, 33, 36, 70, 194

[Vot02] Angelika Votintseva. Specification-Based Test Generation for UML. to
appear: Technical report, Universität Oldenburg (Abteilung Technische
Informatik) see also Chapter 4 in [Hig01], 2002. 70, 71

[Wan00] Farn Wang. Efficient Data-Structure for Fully Symbolic Verification of
Real-Time Systems. In Proc. of the 6th Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1785 of
Lecture Notes in Computer Science (LNCS), pages 157–171. Springer–
Verlag, 2000. 83

[Wan01] Farn Wang. Clock Restiction Diagram: Yet Another Data-Structure for
Fully Symbolic Verification of Timed Automata. Technical Report TR-
IIS-01-002, Institute of Information Science, Academia Sinica, Tapei,
Taiwan, 2001. 83

[WH98] Farn Wang and Pao-Ann Hsiung. Automatic Verification on the Large.
In Proc. of the 3rd IEEE High-Assurance Systems Engineering Sympo-
sium, November 1998. 76

[Wol98] Pierre Wolper. Verification: Dreams and Reality, 1998. Inaugu-
ral lecture of the course “The algorithmic verification of reactive sys-
tems”, online available at http://www.montefiore.ulg.ac.be/%7Epw/-
cours/francqui.html. 6

http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.montefiore.ulg.ac.be/%7Epw/cours/francqui.html
http://www.montefiore.ulg.ac.be/%7Epw/cours/francqui.html
http://www.montefiore.ulg.ac.be/%7Epw/cours/francqui.html
http://www.montefiore.ulg.ac.be/%7Epw/cours/francqui.html
http://www.montefiore.ulg.ac.be/%7Epw/cours/francqui.html
http://www.montefiore.ulg.ac.be/%7Epw/cours/francqui.html

Bibliography 217

[WOLB92] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated
Reasoning: Introduction and Applications. McGraw-Hill, New York,
second edition, 1992. 9

[WT94] Howard Wong-Toi. Symbolic Approximations for Verifying Real-Time
Systems. PhD thesis, Stanford University, November 1994. 14, 93, 95,
120

[Yi90] Wang Yi. Real-Time Behaviour of Asynchronous Agents. In J. C. M.
Baeten and J. W. Klop, editors, CONCUR ’90: Theories of Concur-
rency: Unification and Extension, volume 458 of Lecture Notes in Com-
puter Science (LNCS), pages 502–520. Springer–Verlag, 1990. 14

Index

η∗(.), 56
Inv(., .), 61
Invν(.), 61
.∀U ., 130
.∃U ., 129
2.: power set of a set, 55, 81, 122, 126
Tt(., ., ., .), 60
µ-calculus

semantics of, 123
η−1(.), 56
η̃(.), 56
η−∗(.), 56
Var+(.), 56
--> property, 50
-A: convex hull approximation, 93?

-C: compact DBM representationOFF, 92?

-H size: change size of hash table in passed
list, 95?

-Q: display warnings as queries, 95?

-S 1|2|3: space usage reduction, 93?

-T: optimize time consumptions when sev-
eral properties are examined, 96?

-U: unpack reduced constraint system be-
fore inclusion check, 96?

-W: disable deadlock checker, 95?

-Z: bitstate hashing, 94?

-a: active clock reduction, 92?

-d: depth-first search, 95?

-q: do not display copyright message, 96?

-s: run silently without progress indica-
tor, 96?

-t: print diagnostic trace to stdout, 96?

-y: display traces symbolically, 97?

2-merge, 168
80-20 rule, 7

a posteriori, 1?, 10, 119?

a priori, 13, 76, 102
A<> property, 50, 112
A[] property, 50, 112

abstract and refine, 142?

abstract interpretation, 10, 119
abstraction, 122
abstraction function, 135
abstraction predicate, 134
accepting computation

of a Turing machine, 65?

action, 35
action rule, 61
delay transition rule, 62
action step, 44

simple, 46
synchronized, 46

Active, 58?

active clock reduction (-a), 92?

active object, 38
airbag, 21
AIT-WOODDES project, 71
analog computers, 12
analysis, 1
AND predicate, 56
animation, 38
approximation of universal path proper-

ties, 113?

assignment, 35, 43
assumption

non-convergence of time, 127
asynchronous, 69
asynchronous event, 36
asynchronous parity computer, 164?

atrial chamber, 186
AT&T, 16
attractor, 157
augmentation point, 109?

augmented model, 109?

augmented path semantics, 113?

automated theorem proving, 9

bad property, 168?

Bandera project, 15

219

220

BASIC predicate, 56
basis, 125

set of predicates, 139?

BDD: Binary Decision Diagram, 11, 83
Binary Decision Diagram (BDD), 11, 83
bisimulation, 123
bitstate hashing (-Z), 94?

Booch, 24
Boolean abstraction, 119
Boyer-Moore theorem prover, 9
Bricks Sorter Model, 114–117
bricks sorter model, 115

CADE: Correct Hardware Design and Ver-
ification Methods, 6

canonical, 11
canonical representation of zones, 82
CASE tool, 37
CASE: Computer-Aided Software Engineer-

ing, 37
causality, 36
CAV: Computer Aided Verification, 6, 77
CDD: Clock Difference Diagram, 83
chain reaction, 36?

change size of hash table in passed list (-H
size), 95?

CHARME: Correct Hardware Design and
Verification Methods, 6, 18

Chinese boxes, 10
choice point, 35
chop operation, 14
Church-Turing thesis, 65
clock

(formal), 42?

constraints, 125
evaluation, 45?, 126
region, 127
reset, 43
set, 126

Clock Difference Diagram (CDD), 83
Clock Restriction Diagram (CRD), 83
clocked transition systems, 33
clocks

set of, 126
code generation, 37
code generation process, 69
COMET, 31
committed location, 42
Common Object Request Broker Archi-

tecture (CORBA), 28

compact DBM representation (OFF with
-C), 92?

completeness
of flattening, 184?

theorem for interactive refinement, 141
composition

parallel, 34
computation

of a Turing machine, 65?

computational complexity, 7
Computer Aided Verification (CAV), 6, 77
Computer-Aided Software Engineering (CASE),

37
concretization, 122
concretization function, 135
configuration, 44

of a event system, 64?

of a HTA, 58?

of a Turing machine, 65?

of an Uppaal model, 45?

configuration of a Uppaal model, 45?

configuration vector transformation Tt, 60
connector

history, 35
constraint graphs, 82
continuous part, 46
control situation, 46
convex hull approximation (-A), 93?

CORBA: Common Object Request Broker
Architecture, 28

Correct Hardware Design and Verification
Methods (CADE), 6

Correct Hardware Design and Verification
Methods (CHARME), 6, 18

cost of a hierarchical partitioning, 155
cover number (of a candidate), 161?

coverage, 94
covers a set of well-formed sequence, 79?

CRD: Clock Restriction Diagram, 83

DBM: Difference Bounded Matrix, 82
DDD: Difference Decision Diagram, 83
deadline, 13
deadlock, 62
deep history, 35
default

entry, 57
exit, 35, 56

default history locations, 57

Index 221

delay loop example, 109
continued, 114

delay step, 44, 47
restricted, 128

dense real-time, 76
depth, 155
depth (of a candidate), 162?

depth cost, 155
depth-first search (-d), 95?

development process
ROPES, 31

Difference Bounded Matrix (DBM), 82
Difference Decision Diagram (DDD), 83
disable deadlock checker (-W), 95?

discrete part, 46
discrete real-time, 76
dispatched, 69
display traces symbolically (-y), 97?

display warnings as queries (-Q), 95?

do not display copyright message (-q), 96?

document type definition (dtd), 28
dtd: document type definition, 28
duplications of channels, 180
duration calculus, 14

E<> property, 50
E[] property, 50
Edge-Guided Tree-Indexing, 156?

Ehdm, 9
80-20 rule, 7
embedded system, 12
embedded systems, 21
enabled, 43
entry

default, 57
ENTRY predicate, 56
environment, 37

of an Uppaal model, 45
equivalence of semantics

logical, 132
Esterel Technologies, 16
ETAPS: European joint conference on The-

ory and Practice of Software, ETAPS:
European15

European joint conference on Theory and
Practice of Software (ETAPS), European
joint15

event, 36?

time-out, 38

trigger, 35
event queue, 64?

event queues, 69
event system, 63?

event system configuration, 64?

events
in Rhapsody, 68

executable object, 38
existential until, 129
exit

default, 35, 56
EXIT predicate, 56
expandGlobalJoins, 179?

eXtensible Markup Language (XML), 27

FASE: Fundamental Approaches to Soft-
ware Engineering, 17, 18

FDDI Token Ring Protocol, 100?

FDDI: Fiber Distributed Data Interface,
100

Fiber Distributed Data Interface (FDDI),
100

final state, 34
firm deadline, 13
Fischer’s protocol for mutual exclusion, 43
FMCAD: Formal Methods in Computer

Aided Design, 5, 91
fork, 34
fork, 59
formal

methods, 5
semantics, 30
verification, 9

Formal Methods in Computer Aided De-
sign (FMCAD), 5, 91

formal verification, 2
Fundamental Approaches to Software En-

gineering (FASE), 17, 18
fusion closure, 48

Galois connection, 122
General InterORB Protocol (GIOP), 28
GIOP: General InterORB Protocol, 28
global consistency, 36
global join

example, 178
global reduction, 93
greedy, 160
guard, 35, 43

222

halting problem, 65?

HasHistory(.), 59
heavyweight model extension, 27
HENTRY predicate, 56
heuristic

“Next”, 153, 164?

hierarchical partition, 152
hierarchical partitioning, 151, 154?

cost of a, 155
hierarchical timed automata, 53

semantics, 58?

syntax, 54?

hierarchical timed automaton (HTA), 55
Higher Order Logic (HOL), 9
history

connector, 35
deep, 35
shallow, 35

HISTORY predicate, 56
HOL: Higher Order Logic, 9
HTA configuration, 58
HTA: hierarchical timed automaton, 55
HTML: hypertext markup language, 28
hyperedge, 154
hypergraph, 154
hypertext markup language, 28?

hypertext markup language (HTML), 28

I Can Solve (ICS), 141
ICS: I Can Solve, 141
IIOP: Internet Inter-ORB Protocol, 28
implicit events, 36
incremental, 124
independent, 183
inevitability property, 50
initial location, 126
initial states, 122
instantiateTemplates, 176?

instantiation tree, 174
interesting pair, 163
interface definition language, 28
Internet Inter-ORB Protocol (IIOP), 28
invariant, 42, 126
Isabelle, 9

join, 34
join, 59

Kleene-star, 64
Kripke structure, 122

labeling function, 122
language

modeling, 23
language accepted by a Turing machine,

65?

largest constant, 80, 125
lattice structure, 122
LCF: Logic of Computable Functions, 9
leader election in a ring, 167?

Leaves, 61
levels, UML, 25
lightweight model extension, 27
linear programming, 7
Linear Temporal Logic (LTL), 94
literal, 124
local consistency, 37
local property, 49

validity of, 49
local reduction, 92?

locations
set of, 126
vector of, 45

logic, 4
Logic of Computable Functions (LCF), 9
logical equivalence of semantics, 132
LTL: Linear Temporal Logic, 94

magic square, 10
mania

meta-modeling, 27
matching configuration, 182
MAY, 120
meta-model, 25
meta-modeling

loose, 26
strict, 26

meta-modeling mania, 27
Meta-Object Facility (MOF), 28
methods

formal, 5
Minimum Cut into Bounded Sets, 156
Minimum Cut Into Equal-Sized Sub-

sets, 156
Mizar, 9
model

timed automata, 22
model augmentation, 109?

model checking, 11, 153
state-based, 122

Index 223

trace-based, 122
model extension

heavyweight, 27
lightweight, 27

modeling language, 23
modular, 152
MOF: Meta-Object Facility, 28
monomial, 124
µ-calculus

propositional, 123
µ-equivalence, 130
MUST, 120

“Next” heuristic, 153, 164?

next-free µ-calculus, 129
semantics of the, 130

non-convergence of time assumption, 127
Nordic Workshop on Programming The-

ory (NWPT), 18
NWPT: Nordic Workshop on Programming

Theory, 18

Object Constraint Language (OCL), 30
Object Management Architecture (OMA),

28
Object Management Group (OMG), 24
Object Modeling Technique (OMT), 24
Object Request Broker (ORB), 28
object-oriented software engineering (OOSE),

24
OCL: Object Constraint Language, 30
OMA: Object Management Architecture,

28
OMG IDL: OMG interface definition lan-

guage, 28
OMG interface definition language, 28
OMG interface definition language (OMG

IDL), 28
OMG: Object Management Group, 24
OMT: Object Modeling Technique, 24
OOSE: object-oriented software engineer-

ing, 24
Operating System (OS), 15
operations research, 7
opinion poll protocol, 168?

optimize time consumptions when several
properties are examined (-T), 96?

ORB: Object Request Broker, 28
OS: Operating System, 15
Otter, 9

outgoing transitions, 42
over-approximation, 135

parallel composition, 34
partial order reductions, 11
partition incrementally, 161?

partitioning
hierarchical, 151

postprocessChannels, 180?

potentially always property, 50
predicate abstracted semantics, 136
predicate abstraction, 119, 124?

pref, 169
pref+, 169
preservation requirement

strong, 123
weak, 124

print diagnostic trace to stdout (-t), 96?

priorities, 69
profile

UML, 27
proper configuration of a HTA, 59
proper step, 59
proper transition part, 59
propositional µ-calculus, 123?

propositional symbols, 126
protocol

opinion poll, 168?

Prover Technology, 16
pseudo state, 34
pseudo-transitions, 57
PVS, 9

race condition, 37
Rapid Object-Oriented Process for Em-

bedded Systems (ROPES), 31
rating function, 161?

Rational Rose, 32
reachability property, 50
reactive systems, 2?, 32
real-time

dense, 76
discrete, 76

real-time system, 12, 21
RealTime Operating System (RTOS), 69
RED: Region Encoding Diagram, 83
referential transparency, 10
refinement, 182
refinement checking, 10
refinement of abstraction, 141

224

refining, 119
region, 80?

clock, 127
Region Encoding Diagram (RED), 83
region equivalence, 131
rejecting computation

of a Turing machine, 65?

renaming, 175
request for proposal (RFP), 25
response property, 50
restricted delay step, 128
restricted path, 128
Revision Task Force (RTF), 24
RFP: request for proposal, 25
Rhapsody, 68
Rhapsody, 32
ROPES development process, 31
ROPES: Rapid Object-Oriented Process

for Embedded Systems, 31
Round-Robin scheduler, 116
RTF: Revision Task Force, 24
RTOS: RealTime Operating System, 69
run of an event system, 64?

run silently without progress indicator (-s),
96?

run-to-completion step, 35, 36?

safety property, 50
SAL: Symbolic Analysis Laboratory, 12
scheduling, 12
scheduling policy, 13
SDL: Specification and Description Lan-

guage, 16
SDVS, 9
self-application, 65
self-triggering, 36
semantics

augmented path, 113?

for hierarchical timed automata, 58?

formal, 30
of HTA, 63?

of universal path properties, 112?

predicate abstracted, 136
UML, 30

semantics of µ-calculus, 123
semantics of a timed system, 129
µ-calculus

semantics of, 123
semantics of the next-free µ-calculus, 130

semi-automated theorem proving, 9
sentence, 129
set of clocks, 126
set of locations, 126
set of states, 122
SGML: Standard Generalized Markup Lan-

guage, 28
shadow-vertex simplex algorithm, 7
shallow history, 35
shortest-path closure, 82
simple action step, 46
simplex algorithm, 7
simulation, 124
size (of a candidate), 162?

SLAM project, 16
smoothed analysis, 7
soft deadline, 13
Software Process Engineering (SPE), 28
soundness

of flattening, 184?

theorem for interactive refinement, 141
source, 42
source of a transition, 56
space usage reduction (-S 1|2|3), 93?

SPE: Software Process Engineering, 28
Specification and Description Language (SDL),

16
SPIN, 94
square matrices of bounds, 82
stable configuration, 181
Standard Generalized Markup Language

(SGML), 28
state, 4, 33

basic, 33
pseudo, 34
sub-, 55
super-, 33

state explosion problem, 11
state-based model checking, 122
Statemate, 32
step

delay, 47
proper, 59
run-to-completion, 35
simple action, 46
synchronized action, 46

step encoding, 183
step relation of an event system, 64?

step wise refinement, 10

Index 225

strong preservation requirement, 123
strongest invariant, 12
stub, 34
sub-machines, 34
substate, 55
superstate, 33
Symbolic Analysis Laboratory (SAL), 12
symbolic representation, 76
symbolic state graph, 78?

symbolic states, 84
symbolic techniques, 11
symoblic reachability, 83
symoblic response, 87
symbolic reach, 83?

symbolic response, 87?

sync rule, 62
synchronized action step, 46
synchronous event, 36
synchrony hypothesis, 38
syntactic sugar, 149
syntax

of hierarchical timed automata, 54?

target, 42
target language, 37
target of a transition, 56
TCTL: timed computation tree logic, 49
template mechanism, 175
temporal logic, 4
temporal logics, 2
temporal property

validity of, 50?

terminal state, 34
termination

theorem for interactive refinement, 141
Theorem Proving in Higher Order Logics

(TPHOLs), 6
Theory and Practice of Timed Systems

(TPTS), 17, 18
Three Amigos, 24
time stopping deadlock, 63
time-out event, 38
timed automata, 22

hierarchical, 53
timed automata model, 14, 22
timed automaton, 126
timed computation tree logic (TCTL), 49
timed configuration, 126
timed step, 127?

timed system, 126
semantics of a, 129

timed trace of an HTA, 63
timed trace semantics, 63
timed trace semantics of HTA, 63?

timer, 38
timing constraints, 125
top-down approach, 10
touch (of a candidate), 162?

TPHOLs: Theorem Proving in Higher Or-
der Logics, 6

TPTS: Theory and Practice of Timed Sys-
tems, 17, 18

trace, 44
trace of a Uppaal model, 47?

trace semantics of Uppaal, 48?

trace-based model checking, 122
transition, 42

of a transition, 56
target of a, 56

transition relation, 122, 126
TransitionEnabled, 61
transitions

outgoing, 42
trigger, 69
trigger event, 35
Turing machine, 64?

language accepted by a, 65?

2-merge, 168

UML
0.9, 24?

1.0, 24?

1.1, 24?

1.2, 25?

1.3, 25?

1.4, 25?

levels, 25
profile, 27
semantics, 30

UML profile, 25
UML: Unified Modeling Language, 24
undecidability, 65
Unified

Method 0.8, 24?

Modeling Language, 24–32
Unified Modeling Language (UML), 24
union of DBMs, 83
universal path properties

226

approximation of, 113?

semantics of, 112?

universal path property, 112?

universal Turing machine, 65
universal until, 129
unpack reduced constraint system before

inclusion check (-U), 96?

unstable configuration, 182?

Uppaal model, 45?

Uppaal process, 45?

urgent location, 42
UrgentEnabled, 61

validity
of a local property, 49
of a temporal property, 50?

vector of locations, 45
ventricular chamber, 186
verification, 2

formal, 9
verification engineer, 6
verification of real-time systems, 77?

view, 29
visualSTATE, 16

W3C: World Wide Web Consortium, 28
weak preservation requirement, 124
weak trace, 113?

well-formed sequence, 47
WOODDES project, 71
Workshop on Object-Oriented Design and

Development of Embedded Sys-
tems (WOODDES), 71

World Wide Web Consortium (W3C), 28

XMI: XML Metadata Interchange, 29
XML Metadata Interchange (XMI), 29
XML: eXtensible Markup Language, 27
XOR predicate, 56

zeno, 127
zeno traces, 47
zone, 81?

Abbreviations

AIT-WOODDES: Advanced Information
Technology—Workshop on Object-
Oriented Design and Development
of Embedded Systems, 71

BDD: Binary Decision Diagram, 11, 83

CADE: Correct Hardware Design and Ver-
ification Methods, 6

CASE: Computer-Aided Software Engineer-
ing, 37

CAV: Computer Aided Verification, 6, 77
CDD: Clock Difference Diagram, 83
CHARME: Correct Hardware Design and

Verification Methods, 6, 18
CORBA: Common Object Request Broker

Architecture, 28
CRD: Clock Restriction Diagram, 83

DBM: Difference Bounded Matrix, 82
DDD: Difference Decision Diagram, 83
dtd: document type definition, 28

ETAPS: European joint conference on The-
ory and Practice of Software, 15

FASE: Fundamental Approaches to Soft-
ware Engineering, 17, 18

FDDI: Fiber Distributed Data Interface,
100

FMCAD: Formal Methods in Computer
Aided Design, 5, 91

GIOP: General InterORB Protocol, 28

HOL: Higher Order Logic, 9
HTA: hierarchical timed automaton, 55
HTML: hypertext markup language, 28

ICS: I Can Solve, 141
IIOP: Internet Inter-ORB Protocol, 28

LCF: Logic of Computable Functions, 9
LTL: Linear Temporal Logic, 94

MOF: Meta-Object Facility, 28

NQTHM: aka Boyer-Moore theorem prover,
9?

NWPT: Nordic Workshop on Programming
Theory, 18

OCL: Object Constraint Language, 30
OMA: Object Management Architecture,

28
OMG IDL: OMG interface definition lan-

guage, 28
OMG: Object Management Group, 24
OMT: Object Modeling Technique, 24
OOSE: object-oriented software engineer-

ing, 24
ORB: Object Request Broker, 28
OS: Operating System, 15

RED: Region Encoding Diagram, 83
RFP: request for proposal, 25
ROPES: Rapid Object-Oriented Process

for Embedded Systems, 31
RTF: Revision Task Force, 24
RTOS: RealTime Operating System, 69

SAL: Symbolic Analysis Laboratory, 12
SDL: Specification and Description Lan-

guage, 16
SGML: Standard Generalized Markup Lan-

guage, 28
SPE: Software Process Engineering, 28

TCTL: timed computation tree logic, 49
TPHOLs: Theorem Proving in Higher Or-

der Logics, 6
TPTS: Theory and Practice of Timed Sys-

tems, 17, 18

227

228

UML: Unified Modeling Language, 24

W3C: World Wide Web Consortium, 28
WOODDES:Workshop on Object-Oriented

Design and Development of Em-
bedded Systems, 71

XMI: XML Metadata Interchange, 29
XML: eXtensible Markup Language, 27

Recent BRICS Dissertation Series Publications

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

DS-01-8 Niels Damgaard.Using Theory to Make Better Tools. October
2001. PhD thesis.

DS-01-7 Lasse R. Nielsen. A Study of Defunctionalization and
Continuation-Passing Style. August 2001. PhD thesis.
iv+280 pp.

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipu-
lation. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian. On Static and Dynamic Control-Flow Infor-
mation in Program Analysis and Transformation. August 2001.
PhD thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.

DS-01-3 Thomas S. Hune.Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

DS-00-7 Marcin Jurdziński. Games for Verification: Algorithmic Issues.
December 2000. PhD thesis. ii+112 pp.

DS-00-6 Jesper G. Henriksen.Logics and Automata for Verification: Ex-
pressiveness and Decidability Issues. May 2000. PhD thesis.
xiv+229 pp.

DS-00-5 Rune B. Lyngsø.Computational Biology. March 2000. PhD
thesis. xii+173 pp.

	Abstract
	Acknowledgments
	Overview Table of Contents
	Table of Contents
	Introduction
	Doing it Right: Correctness
	Formal Methods
	The Necessity of Being Formal
	Verification Engineer: A Future Profession?
	Automation, Automation, Automation
	What are Reasonable Hopes?

	Techniques for Formal Verification
	Automated Theorem Proving
	Process Algebraic Methods
	Stepwise Refinement
	Abstract Interpretation
	Model Checking
	Combining Techniques

	The Design of Real-Time Systems
	Discrete Analysis Techniques for Real-Time Systems
	Increase in Complexity

	The State of the Art
	Outline: A Guided Tour Through This Thesis

	I Modeling of Real-Time Systems
	UML and Statecharts
	An Outline of UML
	From Unified Method 0.8 to UML 2.0
	Meta-Modeling: The Four Layers of the UML
	Extensibility: Lightweight and Heavyweight
	Realizing Technologies: OMG and W3C Standards
	Learning UML
	Literature on UML

	UML Statecharts
	The Evolution of Statecharts
	The Basics of UML Statecharts
	Semantics: Still under Development
	CASE Tool Implementations of Statecharts

	Reflection: UML and Statecharts

	The Timed Automata Model of Uppaal
	Timed Automata in Uppaal
	Informal Description
	Formal Syntax

	Trace Semantics of the Uppaal Model
	Collection of Legal Traces

	The Logic Language of Uppaal
	Local Properties
	Temporal Properties

	Reflection: What Kind of Tool is Uppaal?

	Hierarchical Timed Automata
	Syntax of Hierarchical Timed Automata
	A Restricted Statechart Formalism
	Data Components
	Structural Components
	Well-Formedness Constraints

	Operational Semantics of HTAs
	Unbounded Event Queues
	Turing Machines and the Halting Problem
	Undecidability of Unbounded Queues

	Partial Encoding of Events
	Events in Rhapsody
	Respecting Number, Ignoring Order

	Reflection: Hierarchical Timed Automata

	II Algorithmic Verification of Real-Time Systems
	Symbolic Forward Analysis
	Symbolic Representation of Traces
	Data-Structures for Symbolic Real-Time
	Regions and Zones
	Operations on Zones
	Difference-Bounded Matrices (DBMs)

	Forward State-Space Exploration
	Symbolic Forward Reachability
	Variations of the Inclusion Test
	Liveness Checking

	Reflection: Symbolic Analysis of Real-Time Systems

	Efficiency in Real-Time Model Checking
	Optimizations for Real-Time Model Checking
	Active Clock Reduction (-a)
	Compact DBM Representation (OFF with -C)
	Space Usage Reduction by Smaller ``Passed'' List (-S 1|2)

	Approximation Techniques for Real-Time Systems
	Convex Hull Over-Approximation (-A)
	Under-Approximation: Bitstate Hashing (-Z)
	Other Approximation Techniques

	Other Options of the Uppaal Engine
	Depth-First Search (-d)
	Disable Deadlock Checker (-W)
	Display Warnings as Queries (-Q)
	Change Size of Hash Table in ``Passed'' List (-H size)
	Optimize Time Consumptions when Several Prop...(-T)
	Unpack Reduced Constraint System Before Inclusion...(-U)
	Do Not Display Copyright Message (-q)
	Run Silently Without Progress Indicator (-s)
	Print Diagnostic Trace to Standard Output (-t)
	Display Traces Symbolically (-y)

	Run-Time Experiments with Uppaal
	Why Run-Time Comparisons are Problematic
	How to Read the Run-Time Charts (Figures 5.5--5.8)
	Fischer's Mutual Exclusion Protocol
	CSMA/CD Protocol
	FDDI Token Ring Protocol

	Reflection: Optimization Techniques for Real-Time Systems

	The Model Augmentation Technique
	Adding Parts to Uppaal Models
	Formal Definition

	Soundness of Model Augmentation
	Suitable Augmentations

	Model Augmentation for Universal Path Properties
	Bricks Sorter Example
	The Bricks Sorter Model
	Augmentation of the Bricks Sorter Model

	Reflection: Model Augmentation

	Abstract Interpretation of Dense Real-Time
	Outline of this Chapter
	Abstract Interpretation
	Galois Connections
	Property Preservation over Kripke Structures
	Strong and Weak Preservation

	Predicate Abstraction
	Timed Systems with Restricted Delay Steps
	The Next-Free -Calculus

	Predicate Abstraction for Real-Time Systems
	Sets of Basis Predicates
	Refinement of the Abstraction
	Reflection: Abstractions of Real-Time Systems

	III Making Use of Hierarchical Structure
	Hierarchical Partitioning
	How to Group Together?
	The Tree-Indexing Problem
	A Greedy Algorithm to Partition Hierarchically
	Experimental Results
	Asynchronous Parity Computer
	Leader Election in a Ring
	Opinion Poll Protocol

	Reflection: Hierarchical Partitioning

	Model Checking Hierarchical Timed Automata
	Overview on the Flattening Procedure
	Flattening in More Detail
	Translation of Superstates and Entries --- Phase I
	Exit of Superstates via Global Joins --- Phase II
	Post-Processing of Channels --- Phase III

	Semantic Correspondence of HTAs and TAs
	Hierarchical and Flat Configurations
	Correspondence of Steps
	Correspondence of Traces

	Model Checking a Cardiac Pacemaker
	The Hierarchical Timed Automaton Model
	Translation to Uppaal Timed Automata
	Model Checking the Uppaal Model

	Reflection: Flattening Hierarchical Timed Automata

	Epilogue
	Bibliography
	Index
	Abbreviations

