
Uppaal { Present and Future
1

Gerd Behrmann, Kim G. Larsen

Basic Research in Computer Science, Aalborg University, Denmark

Oliver M�oller

Basic Research in Computer Science, Aarhus University, Denmark

Alexandre David, Paul Pettersson, Wang Yi

Department of Information Technology, Uppsala University, Sweden

Abstract

Uppaal is a tool for modelling, simulation and veri�ca-

tion of real-time systems, developed jointly by BRICS

at Aalborg University and the Department of Com-

puter Systems at Uppsala University. The tool is ap-

propriate for systems that can be modelled as a col-

lection of non-deterministic processes with �nite con-

trol structure and real-valued clocks, communicating

through channels or shared variables. Typical applica-

tion areas include real-time controllers and communi-

cation protocols in particular, those where timing as-

pects are critical. In this paper, we review the status

of the currently distributed version of the tool as well

as facilities to be found in upcoming releases.

1 Current Version of Uppaal

1.1 Background

Uppaal [LPY97] consinsts of three main parts: a de-

scription language, a simulator and a model checker.

The description language is a non-deterministic

guarded command language with real-valued clock

variables and simple data types. It serves as a mod-

elling or design language to describe system behavior

as networks of automata extended with clock and data

variables. The simulator is a validation tool which en-

ables examination of possible dynamic executions of a

system during early design (or modelling) stages and

thus provides an inexpensive mean of fault detection

prior to veri�cation by the model checker which cov-

ers the exhaustive dynamic behaviour of the system.

The model checker is to check invariant and bounded-

liveness properties by exploring the symbolic state-

space of a system, i.e., reachability analysis in terms

of symbolic states represented by constraints.

Since the �rst release of Uppaal in 1995, the tool has

been further developed by the teams in Aalborg and

1This work is partially supported by the European Commu-

nity Esprit-LTR Project 26270 VHS (Veri�cation of Hybrid sys-

tems), and the AIT-WOODDES Project No IST-1999-10069.

0

5

10

15

20

25

30

35

40

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18

S
pa

ce
 (

M
b)

Version

Philips Protocol with Collision Handling
Start-up of TDMA Protocol

Fischer’s Protocol

Figure 1: Space (in Mb) benchmarks for Uppaal ver-

sion 1.99 to 2.19. Version 1.99 and 2.19 are

dated December 1996 and September 1998 re-

spectively. All tool versions were compiled with

gcc 2.7.2.3 and executed on the same Pentium

II 375 MHz machine.

Uppsala. Figure 1 illustrates how this has a�ected the

performance of the tool in terms of three examples from

the literature. The diagram shows how the space and

time requirements of Uppaal improved in the period

December 1996 to September 1998 when compiled with

the same compiler and executed on the same machine.

The time reduction is similar [Pet99].

In July 1999 a new version of Uppaal, called Up-

paal2k, was released. The new version, which re-

quired almost two years of development, is designed

to improve the graphical interface of the tool, to al-

low for easier maintenance, and to be portable to

the most common operating systems while still pre-

serving Uppaal's ease-of-use and eÆciency. To meet

these requirements the new version is designed as a

client/server application with a veri�cation server pro-

viding eÆcient C++ services to a Java client over

a socket based protocol. This design also makes

it possible to execute the server and the GUI on

two di�erent machines. Uppaal2k is currently avail-

able for Linux, SunOS and MS Windows platforms.

p. 1

It can be downloaded from the Uppaal home page

http://www.uppaal.com/. Since July 1999, the tool

has been downloaded by more than 800 di�erent users

in 60 countries.

1.2 GUI

The new GUI, shown in Figure 2, has new interfaces

for the three main tool components of Uppaal, i.e.,

the system editor, the simulator and the veri�er. Be-

ing integrated in one common interface, the three tools

now have more uniform interfaces compared to previ-

ous Uppaal versions. The three tools operate on the

same internal system model which makes exchange of

information between the tools easier, e.g., loading a

diagnostic trace generated by the veri�er into the sim-

ulator for further inspection. In addition, several new

functionalities have been implemented in the tool. For

example, the new system editor has been tailored and

extended for the new system description language of

Uppaal2k (see below), the simulator has been modi-

�ed to allow the user to con�gure the level of details

to be displayed of the simulated system, and the veri�-

cation interface has been enriched with a requirement

speci�cation editor which stores the previous veri�ca-

tion results of a logical property until the property or

the system description is modi�ed.

The new Uppaal version also has a richer modelling

language than its predecessors. The new language sup-

ports process templates and more complex (bounded)

data structures, such as data variables, constants, ar-

rays etc. A process template in the new language is a

timed automaton extended with a list of formal param-

eters and a set of locally declared clocks, variables and

constants. Typically, a system description will con-

sist of a set of instances of timed automata declared

from the process templates, and of some global data,

such as global clocks, variables, synchronisation chan-

nels etc. In addition, automata instances may also be

de�ned from templates re-used from existing system

descriptions. Thus, the adopted notion of process tem-

plates (particularly when used in combination with the

possibility to declare local process data) allows for con-

venient re-use of existing models.

1.3 Veri�er

A main focus of the Uppaal project is to develop ef-

�cient algorithms and data structures for the veri�ca-

tion of timed systems. The new veri�cation server of

Uppaal2k contains some recent developments in this

area (though some of the implementations are not yet

available in the public version).

In two recent papers [BLP+99, LWYP99], Behrmann

et al presents a new data structure called Clock Di�er-

ence Diagrams, CDDs. The new structure is BDD-like

(it allows for sharing of isomorphic sub trees) but in-

tended for representing and eÆciently manipulating the

non convex subsets of the Euclidean space encountered

during veri�cation of timed automata. The CDDs have

been implemented in Uppaal to perform the symbolic

state-space exploration instead of the normally used

data structure, called DBMs. In an experiment where

the tool was applied to eight industrial examples, the

space savings using CDDs were between 46% and 99%

with moderate increase in run time.

Another paper [LNAB+98] describes a new veri�cation

technique called Compositional Backwards Reachabil-

ity, CBR. The technique uses compositionality and de-

pendency analysis to improve the eÆciency of symbolic

model checking of state/event models. In an untimed

setting, the technique has made possible automatic ver-

i�cation of very large industrial design. For example a

system with 1421 concurrent machines was checked in

less than 20 minutes on a standard PC. An implemen-

tation of this technique for timed systems is currently

under development and has already proved its applica-

bility on some benchmark examples.

The Uppaal2k veri�cation server has also been ex-

tended with some veri�cation techniques described

elsewhere in the literature. The current version sup-

ports the bit-state hashing under-approximation tech-

nique which has been successfully used in the model-

checking tool SPIN for several years. A technique for

generating an over-approximation of a system's reach-

able state-space based on a convex-hull representations

of constraints is also supported. Finally, an abstraction

technique based on (in-)active clock reductions is avail-

able.

1.4 Case Studies

Uppaal2k has been applied in several case studies. In

this section we brie
y describe some of the major and

more recent case studies performed.

In an ongoing case study [AJ01], Uppaal is applied to

model and analyze a generalized version of a car lock-

ing system developed by Saab Automobile. The locking

system is distributed over several nodes in the internal

communication network that exists in all modern vehi-

cles. The system consists of a central node gathering

information and based on this instructing sub nodes at-

tached to the physical hardware to lock or unlock doors,

trunk lid, etc. The input sources are di�erent kinds of

remote controllers, speed sensors, automatic re-locking

timeouts etc., which based on prede�ned rules may ac-

tivate the locking mechanism. The model of the sys-

tem is derived from the actual functional requirements

of the locking system used at Saab Automobile. Dur-

ing the currently ongoing work with verifying the func-

tional requirements of the model, some inconsistencies

and other problems between requirements have been

found and pointed out to the engineers.

p. 2

Figure 2: Uppaal2k on screen.

In [DY00], David and Wang report on an industrial

application of Uppaal to model and debug a com-

mercial �eld bus communication protocol, AF100 (Ad-

vant Field-bus 100) developed and implemented by the

process control industry for safety-critical applications.

The protocol has been running in various industrial en-

vironments over the world for the past ten years. Due

to the complexity of the protocol and various changes

made over the years, it shows occasionally unexpected

behaviours. During the case study, a number of imper-

fections in the protocol logic and its implementation are

found and the error sources are debugged based on ab-

stract models of the protocol; respective improvements

have been suggested.

In [HLP00], Hune et al. addresses the problem of syn-

thesising production schedules and control programs

for the batch production plant model built in LEGO
MINDSTORMSTM RCXTM. A timed automata model

of the plant which faithfully re
ects the level of ab-

straction needed to synthesise control programs is de-

scribed. This makes the model very detailed and com-

plicated for automatic analysis. To solve this prob-

lem a general way of adding guidance to a model by

augmenting it with additional guidance variables and

transition guards is presented. Applying the technique

makes synthesis of control problems feasible for a plant

producing as many as 60 batches. In comparison, only

two batches could be scheduled without guides. The

synthesized control programs have been executed in the

plant. Doing this revealed some model errors. The pa-

pers [Hun99, IKL+00] also consider systems controlled

by LEGO RCXTM bricks. Here the studied problem

is that of checking properties of the actual programs,

rather than abstract models of programs. It is shown

how Uppaal models can be automatically synthesized

from RCXTM programs, written in the programming

language Not Quite C, NQC. Moreover, a protocol to

facilitate the distribution of NQC programs over several

RCXTM bricks is developed and proved to be correct.

The developed translation and protocol are applied to

a distributed LEGO system with two RCXTM bricks

pushing boxes between two conveyer belts moving in

opposite directions. The system is modelled and some

veri�cation results with Uppaal2k are reported.

In [KLPW99], Kristo�ersen et. al. present an analysis

of an experimental batch plant using Uppaal2k. The

plant is modelled as a network of timed automata where

automata are used for modelling the physical compo-

nents of the plant, such as the valves, pumps, tanks

etc.

2 Recent Developments in Uppaal

Several research activities are conducted within the

context of Uppaal. In particular, extensions of the

tool to allow for parametric models [HRSV], probabilis-

tic models and hybrid system models [CL00] have been

or are under investigation. Also, the state-explosion

problem, which is even more severe in the context

of real-time, has been subject to substantial research.

Beside the already described BDD-like datastructure

CDD [BLP+99, LWYP99], real-time extensions of the

p. 3

partial order reduction technique have been suggested

[BJLY98]. The research results most likely to be found

in versions to be released shortly will be described in

somewhat more detail in the following sections.

2.1 Distributed Uppaal

Real time model checking is a time and memory con-

suming task, quite often reaching the limits of both

computers and the patience of users. An increasingly

common solution to this situation is to use the com-

bined power of normal computers connected in a clus-

ter. Good results have recently been achieved for Up-

paal by distributing both the model checking algo-

rithm and the main data structures [BHV00].

At the core of Uppaal we �nd a state-space explo-

ration algorithm. In principal, we might think of this

as a variation of searching the states (nodes) of an ori-

ented graph. For this, two data structures are responsi-

ble for the potentially huge memory consumption. The

�rst { the Waiting list { contains the states that have

been encountered by the algorithm, but have not been

explored yet, i.e., the successors have not been deter-

mined. The second { the Passed list { contains all

states that have been explored. The algorithm takes

a state from the Waiting list, compares it with the

Passed list, and in case it has not been explored, the

state itself is added to the Passed list while the suc-

cessors are added to the Waiting list.

The distributed version of this algorithm is similar.

Each node (processing unit) in the cluster will hold

fragments of both theWaiting list and the Passed list

according to a distribution function mapping states to

nodes. In the beginning, the distributed Waiting list

will only hold the initial state. What ever node hosts

this state will compare it to its still empty Passed

list fragment and consequently explore it. Now, the

successors are distributed according to the distribution

function and put into the Waiting list fragment on

the respective nodes. This process will be repeated,

but now several nodes contain states in their fragment

of the Waiting list and quickly all nodes become busy

exploring their part of the state space. The algorithm

terminates when allWaiting list fragments are empty

and no states are in the process of being transfered

between nodes.

The distribution function is in fact a hash function.

It distributes states uniformly over its range and hence

implements what is called random load balancing. Since

states are equally likely to be mapped to any node, all

nodes will receive approximately the same number of

states and hence the load will be equally distributed.

This approach is very similar to the one taken by

[SD97]. The di�erence is that Uppaal uses symbolic

states, each covering (in�nitely) many concrete states.

In order to achieve optimal performance, the lookup

performed on the Passed list is actually an inclusion

check. An unexplored symbolic state taken from the

Waiting list is compared with all the explored sym-

bolic states on the Passed list, and only if none of

those states cover (include) the unexplored symbolic

state it is explored. For this to work in the distributed

case, the distribution function needs to guarantee that

potentially overlapping symbolic states are mapped to

the same node in the cluster. A symbolic state can ac-

tually be divided into a discrete part and a continuous

part. By only basing the distribution on the discrete

part, the above is ensured.

One oddity is that, depending on the search order,

building the complete reachable state-space can result

in varying number of states being explored. Experi-

ments have shown that breadth �rst order is close to

optimal when building the complete reachable state-

space. Unfortunately, ensuring strict breadth �rst or-

der in a distributed setting requires synchronizing the

nodes, which is undesirable. Instead, we order the

states in eachWaiting list fragment according to their

distance from the initial state. his results in an approx-

imation of the breadth �rst order. Experiments have

shown that this order drastically reduces the number

of explored states compared to simply using a FIFO

order.

This version of Uppaal has been used on a Sun En-

terprise 10000 with 24 CPUs and on a Linux Beowulf

cluster with 10 nodes. Good speedups have been ob-

served on both platforms when verifying large systems

(around 80% of optimal at 23 CPUs on the Enterprise

10000).

2.2 Cost-Optimal Uppaal

Uppaal was initially intended to prove the correctness

of a real time systems with respect to their speci�ca-

tion. If a system does not meet the speci�cation Up-

paal �nds an error state and can produce diagnostic

information on how to reach this error state. However,

we often prefer to think of these states as desired goal

states and not as error states. If for example four per-

sons have to cross a bridge that can only carry two per-

sons at a time, one would like to know whether they

can reach the safe side, given additional constraints

and deadlines. This example extends to bigger sys-

tems from, e.g., the process industry. It is then often

valuable to know whether it is possible to schedule the

production steps such that all constraints are met. This

approach was used in [Feh99, HLP00] to derive feasible

schedules for a part of a steel plant in Ghent, Belgium,

and a Lego model of this plant, respectively.

Even though it is often hard to �nd a solution, as

soon as a feasible solution is found, one might wonder

whether this is the optimal solution; whether no better

p. 4

solutions exist. To address this problem we included

concepts that are well known from branch and bound

algorithms to Uppaal. It is then possible to derive

optimal traces for Uniformly Priced Timed Automata

(UPTA) [BFH+]. In this model the cost increases with

a �xed rate as time elapses, or with a certain amount

if a transition is taken. The cost is treated as a spe-

cial clock with extra operations, but such that we can

still use the eÆcient data structures currently used in

Uppaal. First results for the steel plant and several

benchmark problems were obtained in [BFH+], and we

hope to include in the next release of Uppaalan option

for detecting optimal traces to goal states.

To be able to �nd time-optimal traces is very useful,

but in many situations we would like to have a more

general notion of cost. To be able to model for exam-

ple machines that use a di�erent amount of energy per

time unit we proposed the model of Linearly Priced

Timed Automata (LPTA). This model extends timed

automata with prices on all transitions and locations.

In these models, the cost of taking an action transition

is the price associated with the transition, and the cost

of delaying d time units in a location is d � p, where p

is the price associated with the location. The cost of

a trace is simply the accumulated sum of costs of its

delay and action transitions.

To deal with LPTA we introduce priced zones, which

assign to a zone a linear function that de�nes the mini-

mal cost of reaching a state in that zone. In [BFH+00]

it was shown that given a set of goal states the cost-

optimal trace is computable. This result is quite re-

markable since several similar extensions of timed au-

tomata have been proven to be undecidable. But fur-

thermore we now even have a prototype implementa-

tion that allows us to perform the �rst experiments

[LBB+01].

From �rst attempts that useUppaal to show schedula-

bility for some notorious problems, we have now a gen-

eral model that allows us to �nd a trace with the mini-

mum cost of all traces ending in a set of goal states. In

this approach, the automata based modeling languages

of the veri�cation tools serves as input language. These

modeling languages are very well-suited in this respect,

as they allow for easy and
exible modeling of systems

consisting of several parallel components that interact

in a time-critical manner and constrain the behavior of

each other in a multitude of ways.

2.3 Hierarchical Uppaal

Hierarchical structures are a popular theme in spec-

i�cation formalisms, such as statecharts [Har87] and

UML [BRJ98]. The main idea is that locations not

necessarily encode atomic points of control, but can

serve as an abbreviation for more complex behavior.

If a non-atomic location is entered, this may trigger a

cascade of events irrelevant to the level of the system

that is currently in focus. If a more detailed view is

required, the explicit description of the sub-component

can be found isolated, since dependencies between the

di�erent levels of hierarchy are restricted.

The immediate bene�t is a concise description, that

allows a complex system to be viewed at di�erent

levels of abstraction and nevertheless contains all

information in detail. Moreover, symmetries can

be expressed explicitly: If two sub-components A

and B of a super-state S are structurally identi-

cal, they may be described as instantiations of the

same template (with possibly di�erent parameters).

Copies of states may exist for notational convenience,

ambiguities are resolved by a unique-name assumption.

We believe that Uppaal can bene�t greatly from these

concepts, since they support a cleaner and more struc-

tured design of large systems. The model can be con-

structed top down, starting with a very abstract notion

that is re�ned subsequently. The simulator can then be

used to validate that the model coincides with the intu-

ition of the designer. Moreover, it is possible to reason

about the model with arbitrary granularity, since, e.g.,

safety- and deadlock-properties can be model-checked

at each stage of modeling. The re�nement relation is

then given by purely structural information.

A second|however ambitious|goal is to exploit the

structure in shaping more eÆcient model-checking al-

gorithms. Related work [AW99] indicates that local-

ity of information can be exploited straightforward in

reachability analysis. Also, the work in [BKLHLN99]

indicates that { at least for untimed systems { one

may exploit the hierarchical structure of a system dur-

ing analysis. However, in the setting of Uppaal, this

is more diÆcult, since all parallel processes implic-

itly synchronize on the passage of time. Approaches

for local-time semantics [BJLY98] have also yet to be

shown to improve veri�cation time in reasonable sce-

narios, i.e. where the dependency between parallel sub-

components is low, thus not all interleavings have to

be taken into account. As a �rst step towards this,

we work on a careful de�nition of hierarchical timed

automata, that support encapsulation and local de�ni-

tions. In particular, the synchronization of joins raises

semantic problems that can be resolved in various ways.

Since some of the design choices are not obvious at �rst,

case-studies are planned that corroborate the natural-

ness of this de�nition in complex examples. A trans-

lation of hierarchical timed automata into a parallel

composition of
at ones serves to readily provide pro-

totypes that can corroborate decisions here or detect

clumsy choices. This
attened system necessarily con-

tains auxiliary constructs to imitate the behavior of the

hierarchical ones. We expect the case-studies to give an

p. 5

intuition, whether this translation slack is tolerable.

The design of the hierarchical timed automata is meant

to be close to UML state-chart diagrams. As for

the real-time aspect, one output of this considerations

will be a real-time pro�le1, that suggests an exten-

sion of UML formalisms with clocks and timed invari-

ants. This work is carried out in the context of AIT-

WOODDES project No IST-1999-10069.

References

[AJ01] Tobias Amnell and Pontus Jansson. Report from

astec-rt auto project | central locking system case study.

In preparation., 2001.

[AW99] Rajeev Alur and Bow-Yaw Wang. \Next" Heuris-

tic for On-the-
y Model Checking. In Proceedings of the

Tenth International Conference on Concurrency Theory

(CONCUR'99), LNCS 1664, pages 98{113. Springer-Verlag,

1999.

[BFH+] Gerd Behrmann, Ansgar Fehnker, Thomas Hune,

Kim Larsen, Paul Pettersson, and Judi Romijn. EÆcient

guiding towards cost-optimality in uppaal. To be submit-

ted to TACAS'2001.

[BFH+00] Gerd Behrmann, Ansgar Fehnker, Thomas

Hune, Kim G. Larsen, Paul Pettersson, Judi Romijn,

and Frits Vaandrager. Minimum-Cost Reachability

for Priced Timed Automata. Submitted for publica-

tion. Available at http://www.docs.uu.se/docs/rtmv/-

papers/bfhlprv-sub00-1.ps.gz., 2000.

[BHV00] Gerd Behrmann, Thomas Hune, and Frits Vaan-

drager. Distributing timed model checking { How the search

order matters. In E. Allen Emerson and A. Prasad Sistla,

editors, Proc. of the 12th Int. Conf. on Computer Aided

Veri�cation, number 1855 in Lecture Notes in Computer

Science, pages 216{231. Springer{Verlag, 2000.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius,

and Wang Yi. Partial Order Reductions for Timed Systems.

In Proc. of CONCUR '98: Concurrency Theory, 1998.

[BKLHLN99] G. Behrmann, H. Andersen K. Larsen,

H. Hulgaard, and J. Lind-Nielsen. Veri�cation of hierarchi-

cal state/event systems using reusability and composition-

ality. In Proc. of the 5th Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, Lec-

ture Notes in Computer Science. Springer{Verlag, 1999.

[BLP+99] Gerd Behrmann, Kim G. Larsen, Justin Pear-

son, Carsten Weise, and Wang Yi. EÆcient timed reacha-

bility analysis using clock di�erence diagrams. In Proc. of

the 11th Int. Conf. on Computer Aided Veri�cation, Lecture

Notes in Computer Science. Springer{Verlag, 1999.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacob-

son. The Uni�ed Modeling Language User Guide. Addison-

Wesley, 1998.

[CL00] Franc Cassez and Kim G. Larsen. The impressive

power of stopwatches. In Proc. of CONCUR '2000: Con-

currency Theory, 2000.

[DY00] Alexandre David and Wang Yi. Modelling and

analysis of a commercial �eld bus protocol. In Proc. of

1A pro�le is the standard formal way to extend UML con-

cepts.

12th Euromicro Conference on Real-Time Systems. IEEE

Computer Society Press, June 2000.

[Feh99] Ansgar Fehnker. Scheduling a steel plant with

timed automata. In Proceedings of the 6th International

Conference on Real-Time Computing Systems and Applica-

tions (RTCSA99), pages 280{286. IEEE Computer Society,

1999.

[Har87] David Harel. Statecharts: A visual formalism for

complex systems. Science of Computer Programming, 1987.

[HLP00] Thomas Hune, Kim G. Larsen, and Paul Petters-

son. Guided Synthesis of Control Programs Using Uppaal.

In Ten H. Lai, editor, Proc. of the IEEE ICDCS Interna-

tional Workshop on Distributed Systems Veri�cation and

Validation, pages E15{E22. IEEE Computer Society Press,

April 2000.

[HRSV] Thomas Hune, Judi Romijn, Mari�elle Stoelinga,

and Frits Vaandrager. Linear parametric model checking

of timed automata. Accpeted for Tools and Algorithms for

the Construction and Analysis of Systems, 2001.

[Hun99] Thomas Hune. Modelling a real-time language. In

Proceedings of FMICS, 1999.

[IKL+00] Torsten K. Iversen, K�are J. Kristo�ersen, Kim G.

Larsen, Morten Laursen, Rune G. Madsen, Ste�en K.

Mortensen, Paul Pettersson, and Chris B. Thomasen.

Model-checking real-time control programs | Verifying

LEGO mindstorms systems using uppaal. In Proc. of 12th

Euromicro Conference on Real-Time Systems, pages 147{

155. IEEE Computer Society Press, June 2000.

[KLPW99] K. Kristo�ersen, K. Larsen, P. Pettersson, and

C. Weise. VHS Case Study 1 - Experimental Batch Plant

using UPPAAL. BRICS, University of Aalborg, Denmark,

May 1999.

[LBB+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma,

Ansgar Fehnker, Thomas Hune, Paul Pettersson, and Judi

Romijn. As Cheap as Possible: EÆcient Cost-Optimal

Reachability for Priced Timed Automata. Submitted for

publication., 2001.

[LNAB+98] J�rn Lind-Nielsen, Henrik Reif Andersen,

Gerd Behrmann, Henrik Hulgaard, K�are J. Kristo�ersen,

and Kim G. Larsen. Veri�cation of Large State/Event Sys-

tems Using Compositionality and Dependency Analysis. In

Bernard Ste�en, editor, Proc. of the 4thWorkshop on Tools

and Algorithms for the Construction and Analysis of Sys-

tems, number 1384 in Lecture Notes in Computer Science,

pages 201{216. Springer{Verlag, 1998.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi.

Uppaal in a Nutshell. Int. Journal on Software Tools for

Technology Transfer, 1(1{2):134{152, October 1997.

[LWYP99] Kim G. Larsen, Carsten Weise, Wang Yi, and

Justin Pearson. Clock di�erence diagrams. Nordic Journal

of Computing, 6(3):271{298, 1999.

[Pet99] Paul Pettersson. Modelling and Analysis of Real-

Time Systems Using Timed Automata: Theory and Prac-

tice. PhD thesis, Department of Computer Systems, Upp-

sala University, February 1999.

[SD97] U. Stern and D. L. Dill. Parallelizing the Mur'

veri�er. In Orna Grumberg, editor, Proc. of the 9th Int.

Conf. on Computer Aided Veri�cation, volume 1254 of Lec-

ture Notes in Computer Science, pages 256{267. Springer{

Verlag, June 1997. Haifa, Isreal, June 22-25.

p. 6

